ATCC ATCC Logo 0
  • Quick Order

SCC-PSA1

CRL-1535

Product category
Animal cells
Organism
Mus musculus, mouse
Classification
Eukaryota, Animalia, Metazoa, Chordata, Vertebrata, Tetrapod
Cell type
fibroblast
Tissue
Testis
Disease
Pluripotent Teratocarcinoma
Applications
3D cell culture
Product format
Frozen
Storage conditions
Vapor phase of liquid nitrogen
Mission Collection Item
This is a Mission Collection Item

Documentation

Biosafety Icon BSL 1

ATCC determines the biosafety level of a material based on our risk assessment as guided by the current edition of Biosafety in Microbiological and Biomedical Laboratories (BMBL), U.S. Department of Health and Human Services. It is your responsibility to understand the hazards associated with the material per your organization’s policies and procedures as well as any other applicable regulations as enforced by your local or national agencies.

ATCC highly recommends that appropriate personal protective equipment is always used when handling vials. For cultures that require storage in liquid nitrogen, it is important to note that some vials may leak when submersed in liquid nitrogen and will slowly fill with liquid nitrogen. Upon thawing, the conversion of the liquid nitrogen back to its gas phase may result in the vial exploding or blowing off its cap with dangerous force creating flying debris. Unless necessary, ATCC recommends that these cultures be stored in the vapor phase of liquid nitrogen rather than submersed in liquid nitrogen.

Required Products

These products are vital for the proper use of this item and have been confirmed as effective in supporting functionality. If you use alternative products, the quality and effectiveness of the item may be affected.

Detailed product information

General

Specific applications
The cells can be maintained in an undifferentiated state by frequent subculture and the use of a fibroblast feeder cell layer (see ATCC CRL-1503).
In the absence of a feeder layer, the cells are encouraged to form aggregates which differentiate forming outer endodermal layers which encapsulate the aggregates.
Aggregates (embryoid bodies) can be encouraged to differentiate further by keeping them in suspension for 5 or more days.
Tested and found negative for ectromelia virus (mousepox).

Characteristics

Growth properties
Adherent
Derivation
The SCC-PSA1 line was isolated from secondary cultures of the OT/5568 transplantable tumor.
Gender
Male
Strain
129/Sv
Comments
NOTE - NO LIVE CULTURES CAN BE SENT.
The cells can be maintained in an undifferentiated state by frequent subculture and the use of a fibroblast feeder cell layer (see ATCC CRL-1503).
In the absence of a feeder layer, the cells are encouraged to form aggregates which differentiate forming outer endodermal layers which encapsulate the aggregates.
Aggregates (embryoid bodies) can be encouraged to differentiate further by keeping them in suspension for 5 or more days.
Collect the bodies from a bacteriological dish and plate them in fresh medium in a tissue culture dish without feeder layer or gelatin.
A somewhat variable percentage will attach.
Change the medium every 2 to 3 days.
Migration of the endodermal layer should begin within 24 to 36 hours after plating.
Do not dislodge cells when changing the medium.
The SCC-PSA1 line was isolated from secondary cultures of the OT/5568 transplantable tumor.
Tested and found negative for ectromelia virus (mousepox).

Handling information

Unpacking and storage instructions
  1. Check all containers for leakage or breakage.
  2. Remove the frozen cells from the dry ice packaging and immediately place the cells at a temperature below ­-130°C, preferably in liquid nitrogen vapor, until ready for use.
Complete medium
The base medium for this cell line is ATCC-formulated Dulbecco's Modified Eagle's Medium, Catalog No. 30-2002. To make the complete growth medium, add the following components to the base medium: fetal bovine serum to a final concentration of 10%.
Temperature
37°C
Atmosphere
95% Air, 5% CO2
Handling procedure
To insure the highest level of viability, thaw the vial and initiate the culture as soon as possible upon receipt. If upon arrival, continued storage of the frozen culture is necessary, it should be stored in liquid nitrogen vapor phase and not at –70°C. Storage at –70°C will result in loss of viability.
NOTE: Set up in advance flasks with irradiated fibroblast feeder layers (e.g., X-irradiated STO cells, ATCC 56-X™).
  1. Thaw the vial by gentle agitation in a 37°C water bath. To reduce the possibility of contamination, keep the O-ring and cap out of the water. Thawing should be rapid (approximately 2 minutes).
  2. Remove the vial from the water bath as soon as the contents are thawed, and decontaminate by dipping in or spraying with 70% ethanol. All of the operations from this point on should be carried out under strict aseptic conditions.
  3. Transfer the vial contents to a centrifuge tube containing 9.0 mL complete growth medium and spin at approximately 125 x g for 5 to 7 minutes. Discard supernatant.
  4. Resuspend the cell pellet with the recommended complete growth medium (see the specific batch information for the culture recommended dilution ratio) and dispense into a 25 cm2 or a 75 cm2 culture flask. It is important to avoid excessive alkalinity of the medium during recovery of the cells. It is suggested that, prior to the addition of the vial contents, the culture vessel containing the complete growth medium be placed into the incubator for at least 15 minutes to allow the medium to reach its normal pH (7.0 to 7.6).
  5. Incubate the culture at 37°C in a suitable incubator. A 5% CO2 in air atmosphere is recommended if using the medium described on this product sheet.
Subculturing procedure

Volumes used in this protocol are for 75 cm2 flask; proportionally reduce or increase amount of dissociation medium for culture vessels of other sizes.

NOTE: Set up in advance flasks with irradiated fibroblast feeder layers (e.g., X-irradiated STO cells, ATCC 56-X™)

  1. Remove and discard culture medium.
  2. Briefly rinse the cell layer with 0.25% (w/v) Trypsin- 0.53 mM EDTA solution to remove all traces of serum, which contains trypsin inhibitor.
  3. Add 2.0 to 3.0 mL of Trypsin-EDTA solution to flask and observe cells under an inverted microscope until cell layer is dispersed (usually within 5 to 10 minutes).
    Note: To avoid clumping do not agitate the cells by hitting or shaking the flask while waiting for the cells to detach.  Cells that are difficult to detach may be placed at 37°C to facilitate dispersal.
  4. Add 6.0 to 8.0 mL of complete growth medium and aspirate cells by gently pipetting. 
  5. To remove trypsin-EDTA solution, transfer cell suspension to a centrifuge tube and spin at approximately 125 x g for 5 to10 minutes.
  6. Discard supernatant and resuspend cells in fresh growth medium. Seed cultures with 8 x 104 cells/cm2 in flasks with feeder layer.
  7. Incubate cultures at 37°C. Subculture every 3 days to maintain in an undifferentiated proliferative state.

 

Note: For more information on enzymatic dissociation and subculturing of cell lines consult Chapter 10 in Culture of Animal Cells, a manual of Basic Technique by R. Ian Freshney, 3rd edition, published by Alan R. Liss, N.Y., 1994

Reagents for cryopreservation
Complete growth medium supplemented with 5% (v/v) DMSO (ATCC 4-X)

Quality control specifications

Mycoplasma contamination
Not detected

Legal disclaimers

Intended use
This product is intended for laboratory research use only. It is not intended for any animal or human therapeutic use, any human or animal consumption, or any diagnostic use.
Warranty

The product is provided 'AS IS' and the viability of ATCC® products is warranted for 30 days from the date of shipment, provided that the customer has stored and handled the product according to the information included on the product information sheet, website, and Certificate of Analysis. For living cultures, ATCC lists the media formulation and reagents that have been found to be effective for the product. While other unspecified media and reagents may also produce satisfactory results, a change in the ATCC and/or depositor-recommended protocols may affect the recovery, growth, and/or function of the product. If an alternative medium formulation or reagent is used, the ATCC warranty for viability is no longer valid.  Except as expressly set forth herein, no other warranties of any kind are provided, express or implied, including, but not limited to, any implied warranties of merchantability, fitness for a particular purpose, manufacture according to cGMP standards, typicality, safety, accuracy, and/or noninfringement.

Disclaimers

This product is intended for laboratory research use only. It is not intended for any animal or human therapeutic use, any human or animal consumption, or any diagnostic use. Any proposed commercial use is prohibited without a license from ATCC.

While ATCC uses reasonable efforts to include accurate and up-to-date information on this product sheet, ATCC makes no warranties or representations as to its accuracy. Citations from scientific literature and patents are provided for informational purposes only. ATCC does not warrant that such information has been confirmed to be accurate or complete and the customer bears the sole responsibility of confirming the accuracy and completeness of any such information.

This product is sent on the condition that the customer is responsible for and assumes all risk and responsibility in connection with the receipt, handling, storage, disposal, and use of the ATCC product including without limitation taking all appropriate safety and handling precautions to minimize health or environmental risk. As a condition of receiving the material, the customer agrees that any activity undertaken with the ATCC product and any progeny or modifications will be conducted in compliance with all applicable laws, regulations, and guidelines. This product is provided 'AS IS' with no representations or warranties whatsoever except as expressly set forth herein and in no event shall ATCC, its parents, subsidiaries, directors, officers, agents, employees, assigns, successors, and affiliates be liable for indirect, special, incidental, or consequential damages of any kind in connection with or arising out of the customer's use of the product. While reasonable effort is made to ensure authenticity and reliability of materials on deposit, ATCC is not liable for damages arising from the misidentification or misrepresentation of such materials.

Please see the material transfer agreement (MTA) for further details regarding the use of this product. The MTA is available at www.atcc.org.

Permits & Restrictions

Import Permit for the State of Hawaii

If shipping to the U.S. state of Hawaii, you must provide either an import permit or documentation stating that an import permit is not required. We cannot ship this item until we receive this documentation. Contact the Hawaii Department of Agriculture (HDOA), Plant Industry Division, Plant Quarantine Branch to determine if an import permit is required.

MORE INFORMATION ABOUT PERMITS AND RESTRICTIONS

References

Curated Citations

Martin GR, Evans MJ. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc. Natl. Acad. Sci. USA 72: 1441-1445, 1975. PubMed: 1055416

Martin GR, et al. The development of cystic embryoid bodies in vitro from clonal teratocarcinoma stem cells. Dev. Biol. 61: 230-244, 1977. PubMed: 590624

Stevens LC. The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Dev. Biol. 21: 364-382, 1970. PubMed: 5436899

Hay, R. J., Caputo, J. L., and Macy, M. L., Eds. (1992), ATCC Quality Control Methods for Cell Lines. 2nd edition, Published by ATCC.

Caputo, J. L., Biosafety procedures in cell culture. J. Tissue Culture Methods 11:223-227, 1988.

View All Curated Citations for this Product

Frequently Asked Questions

Need assistance with this product? Contact our Technical Support team.

Telephone

Telephone

US and Puerto Rico

800-638-6597

Outside the US

+1-703-365-2700
hours

Hours of Operation

Monday-Friday
9:30am - 5:30pm
US Eastern Time