• Quick Order

NTERA-2 cl.D1 [NT2/D1]


NTERA-2 cl.D1 [NT2/D1] is a cell line exhibiting epithelial-like, differentiation changes phenotype, morphology that was isolated in 1980 from the testis of a White, 22-year-old, male patient with carcinoma, malignant pluripotent embryonal. This cell line was deposited by PW Andrews and can be used cancer research.
Product category
Human cells
Homo sapiens, human
epithelial-like,differentiation changes phenotype
Carcinoma; Malignant Pluripotent Embryonal
3D cell culture
Cancer research
Product format
Buy Now
Price: $541.00 EA
Discounts may be available for our fellow nonprofit organizations. Login to see your price.

Generally ships within 1-3 business days


ATCC determines the biosafety level of a material based on our risk assessment as guided by the current edition of Biosafety in Microbiological and Biomedical Laboratories (BMBL), U.S. Department of Health and Human Services. It is your responsibility to understand the hazards associated with the material per your organization’s policies and procedures as well as any other applicable regulations as enforced by your local or national agencies.

ATCC highly recommends that appropriate personal protective equipment is always used when handling vials. For cultures that require storage in liquid nitrogen, it is important to note that some vials may leak when submersed in liquid nitrogen and will slowly fill with liquid nitrogen. Upon thawing, the conversion of the liquid nitrogen back to its gas phase may result in the vial exploding or blowing off its cap with dangerous force creating flying debris. Unless necessary, ATCC recommends that these cultures be stored in the vapor phase of liquid nitrogen rather than submersed in liquid nitrogen.

Required Products

These products are vital for the proper use of this item and have been confirmed as effective in supporting functionality. If you use alternative products, the quality and effectiveness of the item may be affected.

Detailed product information


Specific applications
This cell line is a suitable transfection host.


Growth properties
The parental NTERA-2 lines was established in 1980 from a nude mouse xenograft of the Tera-2 cell line (see ATCC HTB-106).
The NTERA-2 cl.D1 cell line is a pluripotent human testicular embryonal carcinoma cell line derived by cloning the NTERA-2 cell line.
22 years
This is a hypotriploid human cell line with the modal chromosome number of 63 in 48% of cells examined. However, cells with 62 chromosome counts also occurred at a rather high frequency (24%). The rate of polyploidy was 1.6%., About 12 marker chromosomes are constantly found in most cells. They include: der(9)t(1;9)(q25;q34.3); del(1)(q25); der(13)t(11;13)(q13;q34); t(Xq1q); and eight others., At least two markers are found only in some cells. The normal Y chromosome was found in all cells. Only single copies of normal chromosomes 1, 10, 11 and 13 were present. Others were mostly in two or three copies per cell.

This clone differentiates along neuroectodermal lineages after exposure to retinoic acid (RA) or hexamethylene bisacetamide (HMBA).

The RA induced differentiation is characterized by glycolipid changes, appearance of neurons, and induction of homeobox (HOX) gene clusters.

The cells exhibit high expression of N-myc oncogene activity.

To induce differentiation, the cells should be trypsinized and seeded at a density 1 X 10 exp6 cells per 75 sq. cm. in medium containing 0.01 mM trans-retinoic acid.

Stock solutions of trans-retinoic acid (10 mM, dissolved in DMSO) should be stored frozen (preferably under a nitrogen atmosphere).

Handling information

Unpacking and storage instructions
  1. Check all containers for leakage or breakage.
  2. Remove the frozen cells from the dry ice packaging and immediately place the cells at a temperature below ­-130°C, preferably in liquid nitrogen vapor, until ready for use.
Complete medium
The base medium for this cell line is ATCC-formulated Dulbecco's Modified Eagle's Medium, Catalog No. 30-2002. To make the complete growth medium, add the following components to the base medium: fetal bovine serum to a final concentration of 10%.
Handling procedure

To insure the highest level of viability, thaw the vial and initiate the culture as soon as possible upon receipt. If upon arrival, continued storage of the frozen culture is necessary, it should be stored in liquid nitrogen vapor phase and not at -70°C.  Storage at -70°C will result in loss of viability.

  1. Thaw the vial by gentle agitation in a 37°C water bath. To reduce the possibility of contamination, keep the O-ring and cap out of the water.  Thawing should be rapid (approximately 2 minutes).
  2. Remove the vial from the water bath as soon as the contents are thawed, and decontaminate by dipping in or spraying with 70% ethanol. All of the operations from this point on should be carried out under strict aseptic conditions.
  3. Transfer the vial contents to a centrifuge tube containing  9.0 mL complete culture medium. and spin at approximately 125 x g for 5 to 7 minutes.
  4. Resuspend cell pellet with the recommended complete medium (see the specific batch information for the culture recommended dilution ratio). It is important to avoid excessive alkalinity of the medium during recovery of the cells.  It is suggested that, prior to the addition of the vial contents, the culture vessel containing the complete growth medium be placed into the incubator for at least 15 minutes to allow the medium to reach its normal pH (7.0 to 7.6). pH (7.0 to 7.6).
  5. Incubate the culture at 37°C in a suitable incubator.  A 5% CO2 in air atmosphere is recommended if using the medium described on this product sheet.


Subculturing procedure
Subcultures are prepared by scraping. Cells from confluent cultures (approximately 20 million cells per 75 cm2) are dislodged from the flask surface, aspirated and dispensed into new flasks. Cultures should be maintained at high density. Seed new flasks at a density of at least 5 X 106 viable cells per 75 cm2 flask.
Medium Renewal: Every 2 to 3 days

Quality control specifications

Mycoplasma contamination
Not detected
STR profiling
Amelogenin: X,Y
CSF1PO: 10,12
D13S317: 13
D16S539: 11,12,13
D5S818: 9,12
D7S820: 10,12
THO1: 9.3
vWA: 18,19


Deposited as
Homo sapiens
PW Andrews
Year of origin

Legal disclaimers

Intended use
This product is intended for laboratory research use only. It is not intended for any animal or human therapeutic use, any human or animal consumption, or any diagnostic use.

The product is provided 'AS IS' and the viability of ATCC® products is warranted for 30 days from the date of shipment, provided that the customer has stored and handled the product according to the information included on the product information sheet, website, and Certificate of Analysis. For living cultures, ATCC lists the media formulation and reagents that have been found to be effective for the product. While other unspecified media and reagents may also produce satisfactory results, a change in the ATCC and/or depositor-recommended protocols may affect the recovery, growth, and/or function of the product. If an alternative medium formulation or reagent is used, the ATCC warranty for viability is no longer valid.  Except as expressly set forth herein, no other warranties of any kind are provided, express or implied, including, but not limited to, any implied warranties of merchantability, fitness for a particular purpose, manufacture according to cGMP standards, typicality, safety, accuracy, and/or noninfringement.


This product is intended for laboratory research use only. It is not intended for any animal or human therapeutic use, any human or animal consumption, or any diagnostic use. Any proposed commercial use is prohibited without a license from ATCC.

While ATCC uses reasonable efforts to include accurate and up-to-date information on this product sheet, ATCC makes no warranties or representations as to its accuracy. Citations from scientific literature and patents are provided for informational purposes only. ATCC does not warrant that such information has been confirmed to be accurate or complete and the customer bears the sole responsibility of confirming the accuracy and completeness of any such information.

This product is sent on the condition that the customer is responsible for and assumes all risk and responsibility in connection with the receipt, handling, storage, disposal, and use of the ATCC product including without limitation taking all appropriate safety and handling precautions to minimize health or environmental risk. As a condition of receiving the material, the customer agrees that any activity undertaken with the ATCC product and any progeny or modifications will be conducted in compliance with all applicable laws, regulations, and guidelines. This product is provided 'AS IS' with no representations or warranties whatsoever except as expressly set forth herein and in no event shall ATCC, its parents, subsidiaries, directors, officers, agents, employees, assigns, successors, and affiliates be liable for indirect, special, incidental, or consequential damages of any kind in connection with or arising out of the customer's use of the product. While reasonable effort is made to ensure authenticity and reliability of materials on deposit, ATCC is not liable for damages arising from the misidentification or misrepresentation of such materials.

Please see the material transfer agreement (MTA) for further details regarding the use of this product. The MTA is available at

Permits & Restrictions

Import Permit for the State of Hawaii

If shipping to the U.S. state of Hawaii, you must provide either an import permit or documentation stating that an import permit is not required. We cannot ship this item until we receive this documentation. Contact the Hawaii Department of Agriculture (HDOA), Plant Industry Division, Plant Quarantine Branch to determine if an import permit is required.



Curated Citations

Andrews PW. Human teratocarcinomas. Biochim. Biophys. Acta 948: 17-36, 1988. PubMed: 3293662

Mavilio F, et al. Activation of four homeobox gene clusters in human embryonal carcinoma cells induced to differentiate by retinoic acid. Differentiation 37: 73-79, 1988. PubMed: 2898410

Fenderson BA, et al. Glycolipid core structure switching from globo- to lacto- and ganglio- series during retinoic acid-induced differentiation of TERA-2-derived human embryonal carcinoma cells. Dev. Biol. 122: 21-34, 1987. PubMed: 3297853

Andrews PW, et al. Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab. Invest. 50: 147-162, 1984. PubMed: 6694356

Andrews PW, et al. Different patterns of glycolipid antigens are expressed following differentiation of TERA-2 human embryonal carcinoma cells induced by retinoic acid, hexamethylene bisacetamide (HMBA) or bromodeoxyuridine (BUdR). Differentiation 43: 131-138, 1990. PubMed: 2373286

View All Curated Citations for this Product

Frequently Asked Questions

Need assistance with this product? Contact our Technical Support team.



US and Puerto Rico

Outside the US

Hours of Operation

9:30am - 5:30pm
US Eastern Time