Subscribe
Date
Past
2012
2013
2014
2015
2016
2017
2018
Upcoming

5/31/2018

Abstract:

Two of the major challenges that many scientists experience when developing a cell-based assay include obtaining cells with high biological relevance and then producing or procuring enough cells to run the assay without introducing cell variability. hTERT-immortalized primary cells address both issues. These cells are genetically modified such that the cells exhibit the growth characteristics of a continuous cell line but maintain the physiology of a primary cell. In this webinar, ATCC scientists will discuss our broad portfolio of hTERT-immortalized primary cells and provide some application data to illustrate how these cell models can easily be incorporated into your workflow. Special emphasis will be placed upon our new kidney transporter models for predictive toxicology (RPTEC/TERT1 OAT1, RPTEC/TERT1 OCT2, and RPTEC/TERT1 OAT3).

Key Points:

  • There is a lack of in vitro models that durably and correctly recapitulate in vivo physiology
  • hTERT-immortalized primary cells solve the problem of limited biological relevancy in cell-based assays
  • hTERT-immortalized primary cells exhibit the growth characteristics of a continuous cell line but maintain the physiology of a primary cell
  • ATCC has created kidney cell models using a well-characterized hTERT-immortalized RPTEC that stably overexpress the OAT1, OCT2, or OAT3 gene; our data show that these modified cell lines are very useful tools that provide kidney tissue-relevant results, improved consistency over time, and predictability for clinical trials