Background & Introduction

- Herpes simplex virus (HSV-1 and HSV-2) causes a wide range of clinical manifestations that result in lifelong infections.
- Quantitative polymerase chain reaction (qPCR) assays are routinely used for the detection of HSV-1 and HSV-2 infections in clinical samples. However, the accuracy of a qPCR assay is dependent upon the generation of a standard curve using a positive control with a known genome copy number.
- Moreover, an independent positive control is required by clinical laboratories to monitor variations in assay performance for molecular assays.
- ATCC offers molecular standards for HSV-1 and HSV-2 for use as controls for the detection of these viruses from clinical samples and has recently developed a quantitative format for these standards for use in qPCR assays to detect and quantify HSV-1 and HSV-2 from unknown samples.
- To demonstrate the utility of quantitative molecular standards as controls in qPCR assays, we generated standard curves for each and quantified the working reagents for HSV-1 and HSV-2 from the National Institute for Biological Standards and Control, UK (NIBSC) as a proof-of-concept.
- Further, an independent validation study was performed in a clinical lab setting where the HSV-1 and HSV-2 molecular standards were run as controls alongside clinical samples in qPCR assays (n=36) to determine assay reproducibility.

Materials and Methods

Reagents:

The following reagents were used in this study:
- Molecular standards were prepared by extracting DNA from HSV-1 (Mcintyre strain; ATCC® VR-539™) and HSV-2 (MS strain; ATCC® VR-540™) propagated in Vero cells (ATCC® CCL-81™), and the quantitative molecular standards (ATCC® VR-539DD™ and ATCC® VR-540DD™) were subsequently generated by determining the genome copy numbers of the respective molecular standards using Droplet Digital™ PCR (ddPCR™; Bio-Rad).
- The working reagent for HSV-1 and HSV-2 were obtained from NIBSC, UK.
- Virus DNA from the respective working reagents for HSV-1 and HSV-2 was extracted using the QIamp® Viral RNA Mini Kit (QIAGEN®).

qPCR Assay:

qPCR assays were performed using the quantitative molecular standards and the CFX96® Real-Time PCR Detection System (Bio-Rad). The primer and probe sets from a published qPCR assay were used, and the cycling conditions were 50°C for 2 min, 95°C for 2 min, followed by 45 cycles of 95°C for 15 sec and 60°C for 30 sec. Standard curves were generated using serial ten-fold dilutions of the respective quantitative molecular standard DNA, ranging from 2 copies to 2 x 10^5 copies/reaction for HSV-1 and HSV-2. DNA samples and standard curves were tested in triplicate. The relative fluorescence unit (RFU) baseline threshold was set automatically and genome copy numbers were calculated using CFX Manager™ 3.0 Software (Bio-Rad).

Independent Validation of the ATCC Molar Standards:

The ATCC molecular standards for HSV-1 and HSV-2 were serially diluted (1:10 - 1:10,000) and the optimal working dilution was determined to be 1:1000 using an in-house developed qPCR assay. To determine the reproducibility of the control material, as well as to establish a cycle threshold (CT) range, the controls were analyzed in a single replicate each time the HSV assay was run. Any qualitative test with CT value of <40 was considered positive. The time frame for gathering this data spanned from February through April 2015, and 3 different technologists performed the HSV assay on different days. Statistical analyses and the X-bar graphs were created using GraphPad Prism software.

Results

ATCC Quantitative Molecular Standards

<table>
<thead>
<tr>
<th>ATCC® No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR-539DD™</td>
<td>Genomic DNA from Human herpesvirus 1 (HSV-1)</td>
</tr>
<tr>
<td>VR-540DD™</td>
<td>Genomic DNA from Human herpesvirus 2 (HSV-2)</td>
</tr>
<tr>
<td>VR-539QO™</td>
<td>Quantitative Genomic DNA from Human herpesvirus 1 (HSV-1)</td>
</tr>
<tr>
<td>VR-540QO™</td>
<td>Quantitative Genomic DNA from Human herpesvirus 2 (HSV-2)</td>
</tr>
</tbody>
</table>

ATCC Molecular Standards

Independent Assay Validation of Molecular Standards

Figure 3. Independent Validation of the Molecular Standards for HSV-1 and HSV-2.
HSV-1 and HSV-2 molecular standards (ATCC® VR-539DD™ and ATCC® VR-540DD™, respectively) were diluted 1:1000 and the relative quantification qPCR assays over a period of 3 months with 3 different operators (n=36) at the Cincinnati Children’s Hospital Medical Center. CT values were obtained during each run from A) HSV-1 and B) HSV-2 molecular standards, and were plotted in triplicate with the log10(RFU) vs cycle number (RFU) for HSV-1 and HSV-2. The results were calculated using GraphPad Prism software. C) The values for the average CT, standard deviation, and % CV; 3.0 SD range were calculated using GraphPad Prism software. The clinical laboratory considered all Ct values < 40 as positive for HSV.

Conclusions

- The quantitative molecular standards provide well-characterized reference materials for qPCR assays for the detection and precise quantification of HSV-1 and HSV-2.
- The quantitative molecular standards can be readily used to assign a genome copy number to secondary calibrators or unknown samples.
- These standards are compatible with published assays for HSV-1 and HSV-2 and can be used as controls for assay development, verification, and validation.
- External validation of molecular standards for HSV-1 and HSV-2 by a clinical laboratory indicates that these standards can be successfully used for monitoring day-to-day variation and assay performance.

References:


Disclaimers

Bio-Rad®, CFX96®, Droplet Digital™ PCR, and CFX Manager™ 3.0 Software are registered trademarks or trademarks of Bio-Rad Laboratories, Inc. QIAamp® Viral RNA Mini Kit and QIAGEN® are registered trademarks of QIAGEN Inc.