Adherent

Discard the supernatant and resuspend the cells with 10 mL fresh growth medium (warm) and plate.

Biosafety Level

Transfer the vial's contents plus 5 mL of complete growth medium to a 15 mL centrifuge tube. Use an

Gently mix and pellet the cells by centrifugation @ 270 xg for 5 minutes.

Remove the vial from the water bath as soon as the contents are half way thawed (approximately 90

Remove and discard culture medium.

Incubate 37°C in a 5% CO2 in air atmosphere. (Standard DMEM formulations contain 3.7

Add 5 mL of Trypsin-EDTA (0.25% (w/v) Trypsin-0.53 mM EDTA solution, ATCC# 30-2101) solution to

Check all containers for leakage or breakage.

Thaw the vial by gentle agitation in a 37°C water bath. To reduce the possibility of contamination, keep

Add more fresh growth medium (warm) to obtain the total volume recommended for the flask.

Remove the frozen cells from the dry ice packaging and immediately place the cells at a temperature

It is important to avoid excessive alkalinity of the medium

Briefly rinse the cell layer with 1X PBS (SCRR-2201) solution to remove all traces of serum, which

Subculturing Procedure

Procedure:

To insure the highest level of viability, be sure to warm media and Trypsin/EDTA to 37°C before using it on the cells.

Cells should be split when they reach confluency. A split ratio of 1:5 to 1:7 is recommended. Volumes used in

This medium is formulated for use with a 5% CO2 in air atmosphere. (Standard DMEM formulations contain 3.7

This medium is formulated for use with a 5% CO2 in air atmosphere. (Standard DMEM formulations contain 3.7

It is not necessary to coat flasks with gelatin prior to plating cells, if tissue culture quality flasks are used. To

ATCC highly recommends that protective gloves and clothing always be used and a full face mask always be

SAFETY PRECAUTION

Handling Procedure for Frozen Cells

It is suggested that, prior to the addition of the vial contents, the culture vessel containing the growth medium be placed into the incubator for at least 15 minutes to allow the medium to reach its normal pH (7.0 to 7.6).

Fluid change twice a week or when pH decreases. It is important to avoid excessive alkalinity of the medium

during recovery of the cells. It is suggested that, prior to the addition of the vial contents, the culture vessel

Citation of Strain

If use of this culture results in a scientific publication, it should be cited in that manuscript in the following

HFF-1 (ATCC® SCRC-1041™) Please read this FIRST

Storage Temp.
Liquid nitrogen
vapor phase

Biosafety Level

1

Intended Use

This product is intended for research use only. It is not intended for any animal or human therapeutic or
diagnostic use.

Complete Growth Medium

The base medium for this cell line is ATCC-formulated Dulbecco’s Modified Eagle’s Medium, Catalog No. 30-2002. To make the complete growth medium, add the following components to the base medium:

• fetal bovine serum to a final concentration of 15%

This medium contains trypsin in inhibitor.

This medium contains trypsin in inhibitor.
Add 6.0 to 8.0 mL of complete growth medium and rinse surface of the flask to detach all cells. Gently transfer all cells into a centrifuge bottle or tube and centrifuge at 270 xg for 5 minutes. Remove and discard the supernatant. Add more complete growth medium to cell suspension as needed to plate cells at approximately

Place flasks in incubator @ 37°C with a 5% CO₂ gas atmosphere. (Standard DMEM formulations contain 3.7 g/L sodium bicarbonate and a 10% CO₂ in air atmosphere. The base medium for this cell line is ATCC-formulated Dulbecco’s Modified Eagle's Medium, Catalog No. 30-2002. To make the complete growth medium, add the following components to the base medium:

- fetal bovine serum to a final concentration of 15%
- 200 mg/L L-glutamine
- 1% Penicillin/Streptomycin

This medium is formulated for use with a 5% CO₂ in air atmosphere. (Standard DMEM formulations contain 3.7 g/L sodium bicarbonate and a 10% CO₂ in air atmosphere is then recommended).

Citation of Strain

If use of this culture results in a scientific publication, it should be cited in that manuscript in the following manner: HFF-1 (ATCC® SCRC-1041™)


Subcultivation Ratio: A subcultivation ratio of 1:5 to 1:7 is recommended

Medium Renewal: Twice a week or as pH decreases

Cryopreservation Medium

Complete growth medium supplemented with an additional 40% FBS and 10% (v/v) DMSO

Cell culture tested DMSO is available as ATCC Catalog No. 4-X.

Comments

The growth of these cells should be arrested before being used as a feeder layer. ATCC has successfully irradiated (SCRC-1041.1) and treated the cells with Mitomycin C (SCRC-1041.2) for use as a feeder layer. If the HFFs are being used as a feeder layer for ES cells, it is not recommended to use them past passage no. 50 (P50). It is recommended that the feeder cells be plated 24 hours before use at 5X10⁴ cells/cm² in order to obtain a supportive monolayer for stem cell growth.

References

References and other information relating to this product are available online at www.atcc.org.

Biosafety Level: 1

Appropriate safety procedures should always be used with this material. Laboratory safety is discussed in the current publication of the Biosafety in Microbiological and Biomedical Laboratories from the U.S. Department of Health and Human Services Centers for Disease Control and Prevention and National Institutes for Health.

ATCC Warranty

ATCC® products are warranted for 30 days from the date of shipment, and this warranty is valid only if the
product is stored and handled according to the information included on this product information sheet. If the
ATCC® product is a living cell or microorganism, ATCC lists the media formulation that has been found to be
effective for this product. While other, unspecified media may also produce satisfactory results, a change in
media or the absence of an additive from the ATCC recommended media may affect recovery, growth and/or
function of this product. If an alternative medium formulation is used, the ATCC warranty for viability is no
longer valid.

Disclaimers

This product is intended for laboratory research purposes only. It is not intended for use in humans.
While ATCC uses reasonable efforts to include accurate and up-to-date information on this product sheet,
ATCC makes no warranties or representations as to its accuracy. Citations from scientific literature and
patents are provided for informational purposes only. ATCC does not warrant that such information has been
confirmed to be accurate.

This product is sent with the condition that you are responsible for its safe storage, handling, and use. ATCC
is not liable for any damages or injuries arising from receipt and/or use of this product. While reasonable effort
is made to insure authenticity and reliability of materials on deposit, ATCC is not liable for damages arising from
the misidentification or misrepresentation of such materials.

Please see the enclosed Material Transfer Agreement (MTA) for further details regarding the use of this
product. The MTA is also available on our Web site at www.atcc.org.

Additional information on this culture is available on the ATCC web site at www.atcc.org.

© ATCC 2018. All rights reserved. ATCC is a registered trademark of the American Type Culture Collection. [08/08]