Product Sheet

SK-BR-3 [SKBR3] (ATCC® HTB-30™)

Please read this FIRST

Storage Temp.
liquid nitrogen vapor temperature

Biosafety Level
1

Intended Use

This product is intended for research use only. It is not intended for any animal or human therapeutic or diagnostic use.

Complete Growth Medium

The base medium for this cell line is ATCC-formulated McCoy's 5a Medium Modified, Catalog No. 30-2007. To make the complete growth medium, add the following components to the base medium: fetal bovine serum to a final concentration of 10%.

Citation of Strain

If use of this culture results in a scientific publication, it should be cited in that manuscript in the following manner: SK-BR-3 [SKBR3] (ATCC® HTB-30™)

Description

Organism: Homo sapiens, human
Tissue:
mammary gland/breast; derived from metastatic site: pleural effusion
Disease: adenocarcinoma
Age: 43 years
Gender: female
Morphology: epithelial
Growth Properties: adherent
Isoenzymes:
AK-1, 1-2
ES-D, 1
G6PD, B
GLO-I, 2
PGM1, 1-2
PGM3, 1
DNA Profile:
Amelogenin: X
CSF1PO: 12
D13S317: 11,12
D16S539: 9
D7S820: 9,12
THO1: 8,9
TPOX: 8,11
vWA: 17

Cytogenetic Analysis: This is a hypertriploid human cell line with the modal chromosome number of 84, occurring in 34% of cells. Cells having 80 chromosomes also occurred at a high rate (28%); the higher ploidy cells occurred at 7.3%. This cell line has a very complex chromosome composition. Thirty-five to 40% of chromosomes in a cell complement with a modal chromosome number of 84 consisted of structurally altered marker chromosomes. Several markers are longer than chromosome N1. The origins of most of these markers, however, are not clear. Some markers may have at least three individual chromosome segments. The markers [i.e., 7der(1)t(1;21)(p13;q21) [or ?(1q21q)], 7del(2) (q13), and t(7pter--cen--?)], present in some cells only were the only ones in which portions of chromosome segments could be identified. Most cells had about three normal X chromosomes and five or more N7. The structurally normal N1, N14 and N17 were generally absent.

Batch-Specific Information

Refer to the Certificate of Analysis for batch-specific test results.

SAFETY PRECAUTION

ATCC highly recommends that protective gloves and clothing always be used and a full face mask always be worn when handling frozen vials. It is important to note that some vials leak when submerged in liquid nitrogen and will slowly fill with liquid nitrogen. Upon thawing, the conversion of the liquid nitrogen back to its gas phase may result in the vessel exploding or blowing off its cap with dangerous force creating flying debris.

Unpacking & Storage Instructions

1. Check all containers for leakage or breakage.
2. Remove the frozen cells from the dry ice packaging and immediately place the cells at a temperature below -130°C, preferably in liquid nitrogen vapor, until ready for use.

Handling Procedure for Frozen Cells

To insure the highest level of viability, thaw the vial and initiate the culture as soon as possible upon receipt. If upon arrival, continued storage of the frozen culture is necessary, it should be stored in liquid nitrogen vapor phase and not at -70°C. Storage at -70°C will result in loss of viability.

1. Thaw the vial by gentle agitation in a 37°C water bath. To reduce the possibility of contamination, keep the O-ring and cap out of the water. Thawing should be rapid (approximately 2 minutes).
2. Remove the vial from the water bath as soon as the contents are thawed, and decontaminate by dipping in or spraying with 70% ethanol. All of the operations from this point on should be carried out
3. Transfer the vial contents to a centrifuge tube containing 9.0 mL complete culture medium and spin at approximately 125 x g for 5 to 7 minutes.

4. Resuspend cell pellet with the recommended complete medium (see the specific batch information for the culture recommended dilution ratio), and dispense into a 25 cm² or a 75 cm² culture flask. It is important to avoid excessive alkalinity of the medium during recovery of the cells. It is suggested that, prior to the addition of the vial contents, the culture vessel containing the complete growth medium be placed into the incubator for at least 15 minutes to allow the medium to reach its normal pH (7.0 to 7.6).

5. Incubate the culture at 37°C in a suitable incubator. A 5% CO₂ in air atmosphere is recommended if using the medium described on this product sheet.

Handling Procedure for Flask Cultures

The flask was seeded with cells (see specific batch information) grown and completely filled with medium at ATCC to prevent loss of cells during shipping.

1. Upon receipt visually examine the culture for macroscopic evidence of any microbial contamination. Using an inverted microscope (preferably equipped with phase-contrast optics), carefully check for any evidence of microbial contamination. Also check to determine if the majority of cells are still attached to the bottom of the flask; during shipping the cultures are sometimes handled roughly and many of the cells often detach and become suspended in the culture medium (but are still viable).

2. If the cells are still attached, aseptically remove all but 5 to 10 mL of the shipping medium. The shipping medium can be saved for reuse. Incubate the cells at 37°C in a 5% CO₂ in air atmosphere until they are ready to be subcultured.

3. If the cells are not attached, aseptically remove the entire contents of the flask and centrifuge at 125 x g for 5 to 10 minutes. Remove shipping medium and save. Resuspend the pelleted cells in 10 mL of this medium and add to 25 cm² flask. Incubate at 37°C in a 5% CO₂ in air atmosphere until cells are ready to be subcultured.

Subculturing Procedure

Volumes are given for a 75 cm² flask. Increase or decrease the amount of dissociation medium needed proportionally for culture vessels of other sizes. Corning® T-75 flasks (catalog #430641) are recommended for subculturing this product.

1. Remove and discard culture medium.

2. Briefly rinse the cell layer with 0.25% (w/v) Trypsin, 0.53 mM EDTA solution to remove all traces of serum which contains trypsin inhibitor.

3. Add 2.0 to 3.0 mL of Trypsin-EDTA solution to flask and observe cells under an inverted microscope until cell layer is dispersed (usually within 5 to 15 minutes).

Note: To avoid clumping do not agitate the cells by hitting or shaking the flask while waiting for the cells to detach. Cells that are difficult to detach may be placed at 37°C to facilitate dispersal.

4. Add 6.0 to 8.0 mL of complete growth medium and aspirate cells by gently pipetting.

5. Add appropriate aliquots of the cell suspension to new culture vessels.

6. Incubate cultures at 37°C.

Subcultivation Ratio: A subcultivation ratio of 1:2 is recommended

Medium Renewal: 2 to 3 times per week

Cryopreservation Medium

Complete culture medium described above supplemented with 5% (v/v) DMSO. Cell culture tested DMSO is available as ATCC Catalog No. 4-X.

Comments

The patient, a White, Caucasian female, age 43, blood type A+, had been treated with radiation, steroids, cytoxan and 5-fluorouracil. No virus particles.

Ultrastructural features include microvilli and desmosomes, glycogen granules, large lysosomes, bundles of cytoplasmic fibrils.

The SK-BR-3 cell line overexpresses the HER2/c-erb-2 gene product.

References

References and other information relating to this product are available online at www.atcc.org.
Appropriate safety procedures should always be used with this material. Laboratory safety is discussed in the current publication of the *Biosafety in Microbiological and Biomedical Laboratories* from the U.S. Department of Health and Human Services Centers for Disease Control and Prevention and National Institutes for Health.

ATCC Warranty

ATCC® products are warranted for 30 days from the date of shipment, and this warranty is valid only if the product is stored and handled according to the information included on this product information sheet. If the ATCC® product is a living cell or microorganism, ATCC lists the media formulation that has been found to be effective for this product. While other, unspecified media may also produce satisfactory results, a change in media or the absence of an additive from the ATCC recommended media may affect recovery, growth and/or function of this product. If an alternative medium formulation is used, the ATCC warranty for viability is no longer valid.

Disclaimers

This product is intended for laboratory research purposes only. It is not intended for any animal or human therapeutic or diagnostic use.

While ATCC uses reasonable efforts to include accurate and up-to-date information on this product sheet, ATCC makes no warranties or representations as to its accuracy. Citations from scientific literature and patents are provided for informational purposes only. ATCC does not warrant that such information has been confirmed to be accurate.

This product is sent with the condition that you are responsible for its safe storage, handling, and use. ATCC is not liable for any damages or injuries arising from receipt and/or use of this product. While reasonable effort is made to insure authenticity and reliability of materials on deposit, ATCC is not liable for damages arising from the misidentification or misrepresentation of such materials.

If use of this culture results in a scientific publication, it should be cited in that manuscript in the following manner: SK-BR-3 [SKBR3] (ATCC® HTB-30™)

Complete Growth Medium

The base medium for this cell line is ATCC-formulated McCoy's 5a Medium Modified, Catalog No. 30-2007. To make the complete growth medium, add the following components to the base medium: fetal bovine serum to a final concentration of 10%.

Citation of Strain

If use of this culture results in a scientific publication, it should be cited in that manuscript in the following manner: SK-BR-3 [SKBR3] (ATCC® HTB-30™)