Description

Organism: *Mus musculus* (B cell); *Mus musculus* (myeloma), mouse (B cell); mouse (myeloma)

Isotype: mouse IgG1 kappa

Cell Type: hybridoma/lymphoblast B lymphocyte; somatic cell hybrid

Morphology: lymphoblast

Growth Properties: suspension

Batch-Specific Information

Refer to the Certificate of Analysis for batch-specific test results.

SAFETY PRECAUTION

ATCC highly recommends that protective gloves and clothing always be used and a full face mask always be worn when handling frozen vials. It is important to note that some vials leak when submersed in liquid nitrogen and will slowly fill with liquid nitrogen. Upon thawing, the conversion of the liquid nitrogen back to its gas phase may result in the vessel exploding or blowing off its cap with dangerous force creating flying debris.

Unpacking & Storage Instructions

1. Check all containers for leakage or breakage.

2. Remove the frozen cells from the dry ice packaging and immediately place the cells at a temperature below -130°C, preferably in liquid nitrogen vapor, until ready for use.

Handling Procedure for Frozen Cells

Handling Procedure for Frozen Cells

To insure the highest level of viability, thaw the vial and initiate the culture as soon as possible upon receipt. If upon arrival, continued storage of the frozen culture is necessary, it should be stored in liquid nitrogen vapor phase and not at -70°C. Storage at -70°C will result in loss of viability.

SAFETY PRECAUTION: ATCC highly recommends that protective gloves and clothing always be used and a full face mask always be worn when handling frozen vials. It is important to note that some vials leak when submersed in liquid nitrogen and will slowly fill with liquid nitrogen. Upon thawing, the conversion of the liquid nitrogen back to its gas phase may result in the vessel exploding or blowing off its cap with dangerous force creating flying debris.

1. Thaw the vial by gentle agitation in a 37°C water bath. To reduce the possibility of contamination, keep the O-ring and cap out of the water. Thawing should be rapid (approximately 2 minutes).

2. Remove the vial from the water bath as soon as the contents are thawed, and decontaminate by dipping in or spraying with 70% ethanol. All of the operations from this point on should be carried out under strict aseptic conditions.

3. Transfer the vial contents to a centrifuge tube containing 9.0 ml complete culture medium and spin at approximately 125 x g for 5 to 7 minutes.

4. Resuspend cell pellet with the recommended complete medium (see the specific batch information for the culture recommended dilution ratio) and dispense into a 25 cm² or a 75 cm² culture flask. It is important to avoid excessive alkalinity of the medium during recovery of the cells. It is suggested that, prior to the addition of the vial contents, the culture vessel containing the complete growth medium be placed into the incubator for at least 15 minutes to allow the medium to reach its normal pH (7.0 to 7.6).

5. Incubate the culture at 37°C in a suitable incubator. A 5% CO₂ in air atmosphere is recommended if using the medium described on this product.

Subculturing Procedure

Protocol: Shake off attached cells and scrape if necessary. Cultures can be maintained by addition of fresh medium. Alternatively, cultures can be established by centrifugation with subsequent resuspension at 1 X 10(4) to 1 X 10(5) viable cells/ml.

Interval: Maintain cultures at a cell concentration between 2.5 X 10(5) and 1 X 10(6) cells/ml.

Medium Renewal: Add fresh medium every 2 to 3 days (depending on cell density)

Cryopreservation Medium

Cryoprotectant Medium

Complete growth medium described above supplemented with an additional 10% fetal bovine serum and 7.5 % (v/v) DMSO.
Animals were immunized with CR3 (CD11b/CD18). Spleen cells were fused with Sp2/0 myeloma cells. KIM185 stimulates cell homotypic aggregation by a CD11 pathway in the JY human B lymphoblastoid cell line, and it induces the adherence of neutrophils to protein-coated plastic by a CD11b-dependent mechanism [PubMed: 7690325]. The antibody recognizes an epitope distinct from the KIM127 (ATCC CRL-2838) antibody.