Unpacking & Storage Instructions

1. Check all containers for leakage or breakage.
2. Remove the frozen cells from the dry ice packaging and immediately place the cells at a temperature below -130°C, preferably in liquid nitrogen vapor, until ready for use.

Handling Procedure for Frozen Cells

To insure the highest level of viability, thaw the vial and initiate the culture as soon as possible upon receipt. If upon arrival, continued storage of the frozen culture is necessary, it should be stored in liquid nitrogen vapor phase and not at -70°C. Storage at -70°C will result in loss of viability.

1. Thaw the vial by gentle agitation in a 33°C water bath. To reduce the possibility of contamination, keep the O-ring and cap out of the water. Thawing should be rapid (approximately 2 minutes).
2. Remove the vial from the water bath as soon as the contents are thawed, and decontaminate by dipping in or spraying with 70% ethanol. All of the operations from this point on should be carried out under strict aseptic conditions.
3. Transfer the vial contents to a centrifuge tube containing 9.0 mL complete culture medium and spin at approximately 125 x g for 5 to 7 minutes.
4. Resuspend cell pellet with the recommended complete medium (see the specific batch information for the culture recommended dilution ratio) and dispense into a 25 cm² or a 75 cm² culture flask. It is important to avoid excessive alkalinity of the medium during recovery of the cells. It is suggested that, prior to the addition of the vial contents, the culture vessel containing the complete growth medium be placed into the incubator for at least 15 minutes to allow the medium to reach its normal pH (7.0 to 7.6).
5. Incubate the culture at 33°C in a suitable incubator. A 5% CO₂ in air atmosphere is recommended if using the medium described on this product sheet.

Handling Procedure for Flask Cultures

The flask was seeded with cells (see specific batch information), grown, and completely filled with medium at ATCC to prevent loss of cells during shipping.

1. Upon receipt, visually examine the culture for macroscopic evidence of any microbial contamination. Using an inverted microscope (preferably equipped with phase-contrast optics), carefully check for any evidence of microbial contamination. Also, check to determine if the majority of cells are still attached to the bottom of the flask; during shipping the cultures are sometimes handled roughly and many of the cells often detach and become suspended in the culture medium (but are still viable).
2. **If the cells are still attached**, aseptically remove all but 5 to 10 mL of the shipping medium. The shipping medium can be saved for reuse. Incubate the cells at 33°C in a 5% CO₂ in air atmosphere until they are ready to be subcultured.
3. **If the cells are not attached**, aseptically remove the entire contents of the flask and centrifuge at 125 x g for 5 to 10 minutes. Remove shipping medium and save. Resuspend the pelleted cells in 10
Storage Temp.
liquid nitrogen
vapor phase

Biosafety Level
2

Intended Use

This product is intended for research use only. It is not intended for any animal or human therapeutic or diagnostic use.

Complete Growth Medium

Dulbecco's modified Eagle's medium with 4 mM L-glutamine adjusted to contain 1.5g/L sodium bicarbonate and 4.5 g/L glucose and supplemented with 0.1 mM non-essential amino acids, 96%; fetal bovine serum, 4%

Citation of Strain

If use of this culture results in a scientific publication, it should be cited in that manuscript in the following manner: RPE-J (ATCC® CRL-2240™)

Subculture Ratio: 1:3

Medium Renewal: Every 2 to 3 days.

Cryopreservation Medium

Complete growth medium (see above) with an additional 16% fetal bovine serum and 5% (v/v) DMSO.

Cell culture tested DMSO is available as ATCC® Catalog No. 4-X.

Comments

The cells express a transformed phenotype at the permissive temperature (33°C), and a non-transformed phenotype at the non-permissive temperature (40°C). They must be cultured at the permissive temperature and do not grow at 37°C.

When RPE-J cells are grown on nitrocellulose filters coated with a thin layer of Matrigel in the presence of 10(⁻⁶) M retinoic acid for 6 days at 33°C and then switched to the non-permissive temperature of 40°C for 33 to 36 hours, they acquire a differentiated polarized RPE phenotype. Under these conditions, RPE-J cells exhibit circumferential staining for the tight-junction protein ZO-1 and acquire a transepithelial resistance of 350 ohms/cm². Ref

RPE-J is the only established RPE cell line that maintains epithelial cell surface polarity. The cells retain many properties of RPE including expression of the rat RPE marker RET-PE2 and the ability to phagocytose latex beads. Ref

A culture submitted to the ATCC in July 1995 was found to be contaminated with Mycoplasma hyorhinis and was cured by a 21-day treatment with BM Cycline. The cells were assayed for mycoplasma by the Hoechst stain and the standard culture test over a six-week period following treatment and all tests were negative. RPE-J is a retinal pigment epithelial (RPE) cell line derived from primary cultures of RPE cells taken from 7-day-old Long-Evans rats.

References

References and other information relating to this product are available online at www.atcc.org.

Biosafety Level: 2

Appropriate safety procedures should always be used with this material. Laboratory safety is discussed in the current publication of the Biosafety in Microbiological and Biomedical Laboratories from the U.S. Department of Health and Human Services Centers for Disease Control and Prevention and National Institutes for Health.
ATCC Warranty

ATCC® products are warranted for 30 days from the date of shipment, and this warranty is valid only if the product is stored and handled according to the information included on this product information sheet. If the ATCC® product is a living cell or microorganism, ATCC lists the media formulation that has been found to be effective for this product. While other, unspecified media may also produce satisfactory results, a change in media or the absence of an additive from the ATCC recommended media may affect recovery, growth and/or function of this product. If an alternative medium formulation is used, the ATCC warranty for viability is no longer valid.

Disclaimers

This product is intended for laboratory research purposes only. It is not intended for use in humans. While ATCC uses reasonable efforts to include accurate and up-to-date information on this product sheet, ATCC makes no warranties or representations as to its accuracy. Citations from scientific literature and patents are provided for informational purposes only. ATCC does not warrant that such information has been confirmed to be accurate.

This product is sent with the condition that you are responsible for its safe storage, handling, and use. ATCC is not liable for any damages or injuries arising from receipt and/or use of this product. While reasonable effort is made to insure authenticity and reliability of materials on deposit, ATCC is not liable for damages arising from the misidentification or misrepresentation of such materials.

Please see the enclosed Material Transfer Agreement (MTA) for further details regarding the use of this product. The MTA is also available on our Web site at www.atcc.org.

Additional information on this culture is available on the ATCC web site at www.atcc.org.