Description

Organism: Homo sapiens, human
Tissue: lung
Disease: carcinoma
Cell Type: epithelial
Age: 58 years
Gender: male
Morphology: epithelial-like
Growth Properties: adherent
DNA Profile:
Amelogenin: X, Y
CSF1PO: 10, 12
D13S317: 11
D16S539: 11, 12
D5S818: 11
D7S820: 8, 11
TH01: 8, 9, 3
TPOX: 8, 11
vWA: 14

Batch-Specific Information

Refer to the Certificate of Analysis for batch-specific test results.

SAFETY PRECAUTION

ATCC highly recommends that protective gloves and clothing always be used and a full face mask always be worn when handling frozen vials. It is important to note that some vials leak when submersed in liquid nitrogen and will slowly fill with liquid nitrogen. Upon thawing, the conversion of the liquid nitrogen back to its gas phase may result in the vessel exploding or blowing off its cap with dangerous force creating flying debris.

Unpacking & Storage Instructions

1. Check all containers for leakage or breakage.
2. Remove the frozen cells from the dry ice packaging and immediately place the cells at a temperature below -130°C, preferably in liquid nitrogen vapor, until ready for use.

Handling Procedure for Frozen Cells

To ensure the highest level of viability, thaw the vial and initiate the culture as soon as possible upon receipt.

1. Initial seeding density is 1 x 10⁶ and 2 x 10⁶. Thaw the vial by gentle agitation in a 37°C water bath. To reduce the possibility of contamination, keep the O-ring and cap out of the water. Thawing should be rapid (approximately 2 minutes).
2. Remove the vial from the water bath as soon as the contents are thawed, and decontaminate by dipping in or spraying with 70% ethanol. All of the operations from this point on should be carried out under strict aseptic conditions.
3. Transfer the vial contents to a centrifuge tube containing 9.0 mL complete culture medium and spin at approximately 125 x g for 5 to 7 minutes.
4. Resuspend cell pellet with the recommended complete medium (see the specific batch information for the culture recommended dilution ratio). It is important to avoid excessive alkalinity of the medium during recovery of the cells. It is suggested that, prior to the addition of the vial contents, the culture vessel containing the complete growth medium be placed into the incubator for at least 15 minutes to allow the medium to reach its normal pH (7.0 to 7.6). pH (7.0 to 7.6).
5. Incubate the culture at 37°C in a suitable incubator. A 5% CO₂ in air atmosphere is recommended if using the medium described on this product sheet.

Subculturing Procedure

Volumes used in this protocol are for 75 cm² flask; proportionally reduce or increase amount of dissociation medium for culture vessels of other sizes. Corning® T-75 flasks (catalog #430641) are recommended for...
subculturing this product.

1. Remove and discard culture medium.
2. Briefly rinse the cell layer with 0.25% (w/v) Trypsin-0.53 mM EDTA solution to remove all traces of serum that contains trypsin inhibitor.
3. Add 2.0 to 3.0 mL of Trypsin-EDTA solution to flask and observe cells under an inverted microscope until cell layer is dispersed (usually within 5 to 15 minutes).
 Note: To avoid clumping do not agitate the cells by hitting or shaking the flask while waiting for the cells to detach. Cells that are difficult to detach may be placed at 37°C to facilitate dispersal.
4. Add 6.0 to 8.0 mL of complete growth medium and aspirate cells by gently pipetting.
5. Add appropriate aliquots of the cell suspension to new culture vessels.
 Cultures can be established between 2 x 10^3 and 1 x 10^4 viable cells/cm^2. Do not exceed 7 x 10^4 cells/cm^2.
6. Incubate cultures at 37°C.

Interval: Maintain cultures at a cell concentration between 6 X 10^3 and 6 X 10^4 cell/cm^2.

Subcultivation Ratio: A subcultivation ratio of 1:3 to 1:8 is recommended

Medium Renewal: 2 to 3 times per week

Cryopreservation Medium

Complete growth medium plus 5% DMSO

Comments

In lung cancer, Vimentin intermediate filament (IF) proteins have been implicated in many aspects of cancer initiation and progression, including tumorigenesis, epithelial-to-mesenchymal transition (EMT/MET), and the metastatic spread of cancer. Vimentin expression is generally upregulated when the cell is in the mesenchymal relative to the epithelial status. Here, we created a Vim-RFP reporter cell line (CCL-185EMT) using the CRISPR/Cas9 gene editing platform and the parental A549 (CCL-185) non-small cell lung cancer (NSCLC) cell line (a gold standard for studying EMT in cancer metastasis within the lung cancer research community). The created CCL-185EMT cell line harbors a C-terminal red fluorescent protein (RFP) tag on the vimentin gene. This will enable the tracking of the EMT status of cells in vitro by monitoring RFP expression. The integrity of the Vim RFP knock-in has been verified at the genomic, mRNA and protein level for sequence and expression. Functional evaluation of CCL-185EMT shows sensitivity to anti-EMT drugs PPI1 and A83-1. This provides the foundation for the high throughput (HTS) identification of new anti-EMT drugs for metastatic NSCLC therapy. The A549 Vim RFP reporter cell line provides a visualizable, convenient and sensitive platform for research on the mechanisms of metastasis in vitro and the development of new antitumor drugs for metastatic NSCLC.

References

References and other information relating to this product are available online at www.atcc.org.

Biosafety Level: 2

Appropriate safety procedures should always be used with this material. Laboratory safety is discussed in the current publication of the *Biosafety in Microbiological and Biomedical Laboratories* from the U.S. Department of Health and Human Services Centers for Disease Control and Prevention and National Institutes for Health.

ATCC Warranty

ATCC® products are warranted for 30 days from the date of shipment, and this warranty is valid only if the product is stored and handled according to the information included on this product information sheet. If the ATCC® product is a living cell or microorganism, ATCC lists the media formulation that has been found to be effective for this product. While other, unspecified media may also produce satisfactory results, a change in media or the absence of an additive from the ATCC recommended media may affect recovery, growth and/or function of this product. If an alternative medium formulation is used, the ATCC warranty for viability is no longer valid.

Disclaimers

This product is intended for laboratory research purposes only. It is not intended for use in humans. While ATCC uses reasonable efforts to include accurate and up-to-date information on this product sheet, ATCC makes no warranties or representations as to its accuracy. Citations from scientific literature and patents are provided for informational purposes only. ATCC does not warrant that such information has been
confirmed to be accurate. This product is sent with the condition that you are responsible for its safe storage, handling, and use. ATCC is not liable for any damages or injuries arising from receipt and/or use of this product. While reasonable effort is made to insure authenticity and reliability of materials on deposit, ATCC is not liable for damages arising from the misidentification or misrepresentation of such materials. Please see the enclosed Material Transfer Agreement (MTA) for further details regarding the use of this product. The MTA is also available on our Web site at www.atcc.org.

Additional information on this culture is available on the ATCC web site at www.atcc.org.

© ATCC 2019. All rights reserved. ATCC is a registered trademark of the American Type Culture Collection. [11/05]