Product Sheet

ATCC-HYR0103 Human Induced Pluripotent Stem (IPS) Cells (ATCC® ACS-1007™)

Please read this FIRST

Description

IMPORTANT: ATCC strongly recommends that users download and read the ATCC® Stem Cell Culture Guide: Tips and Techniques for Culturing Stem Cells (www.atcc.org/Guides/Guides.aspx) before initiating their cultures.

ATCC-HYR0103 primary hepatic fibroblasts were obtained from a healthy donor. The fibroblasts were reprogrammed by the expression of OCT4, SOX2, KLF4 and MYC gene sequences using retroviral transduction. This cell line provides a unique model system for better understanding hepatic development and differentiation, as well as source material for the development of iPSC-derived hepatocytes.

Cell Type: retroviral reprogrammed hiPSC

Reprogramming Method:
Retroviral expression of OCT4, SOX2, KLF4, and MYC genes

Disease: normal

Gender: male

Age: 31 years

Isolation Date: 2011

Source:
Primary hepatic fibroblast

Batch-Specific Information

Refer to the Certificate of Analysis for batch-specific test results.

SAFETY PRECAUTION

ATCC highly recommends that protective gloves and clothing always be used and a full face mask always be worn when handling frozen vials. It is important to note that some vials leak when submersed in liquid nitrogen and will slowly fill with liquid nitrogen. Upon thawing, the conversion of the liquid nitrogen back to its gas phase may result in the vessel exploding or blowing off its cap with dangerous force creating flying debris.

Unpacking & Storage Instructions

1. Check all containers for leakage or breakage.
2. Remove the frozen cells from the dry ice packaging and immediately place the cells at a temperature below -130°C, preferably in liquid nitrogen vapor, until ready for use.

Handling Procedure for Frozen Cells

To insure the highest level of viability, thaw the vial and initiate the culture as soon as possible upon receipt. If, upon arrival, continued storage of the frozen culture is necessary, it should be stored in liquid nitrogen vapor phase and not at ~80°C. Storage at ~80°C will result in loss of viability.

Preparation for Culture

1. **Night before thawing iPSC cells** – Thaw CellMatrix™ Basement Membrane Gel on ice in refrigerator or cold room (2°C to 8°C).
2. **One Hour Prior to Thawing the iPSC Cells** – Prepare coated plates as described.
3. **30 Minutes Prior to Handling Cells** – Pre-warm Pluripotent Stem Cell SFM XF/FF (stem cell culture medium) at 37°C for at least 30 minutes before adding to cells. If using ROCK Inhibitor Y27632, prepare stem cell culture medium supplemented with final concentration of 10 μM ROCK Inhibitor Y27632. Stem cell culture medium with ROCK inhibitor must be used immediately.

Note: Addition of ROCK inhibitor has been shown to increase the survival rate during subcultivation and thawing of human iPSCs. The use of ROCK inhibitor may cause a transient spindle-like morphology effect on the cells. However, the colony morphology will recover after subsequent media change without ROCK inhibitor.

Protocol for Coating Plates

Important: CellMatrix Gel will solidify in 15 to 30 minutes above 15°C. Keep CellMatrix Gel and labware on ice at all times to prevent the matrix from gelling prematurely.

Calculate the appropriate CellMatrix volume per plate based on concentration and usage. The concentration of CellMatrix is found on the product label.

Example: 2 mL of CellMatrix at 150 μg/mL is required to coat one 6 cm dish. To coat two 6 cm dishes, prepare as follows:

- Dilute CellMatrix in DMEM:F12 at a working concentration of 150 μg/mL:
- Protein concentration of CellMatrix (on product label): 14 mg/mL.
Product Sheet
ATCC-HYR0103 Human Induced Pluripotent Stem (IPS) Cells (ATCC® ACS-1007™)

Please read this FIRST

Intended Use

This product is intended for research use only. It is not intended for any animal or human therapeutic or diagnostic use.

Citation of Strain

If use of this culture results in a scientific publication, it should be cited in that manuscript in the following manner: ATCC-HYR0103 Human Induced Pluripotent Stem (IPS) Cells (ATCC® ACS-1007™)

Initiation of Cultures

1. Rapidly thaw the cells by placing the cryovial in a 37°C water bath, swirling gently. Remove the cryovial from the water bath when only a few ice crystals are remaining.
2. Sterilize the cryovial by rinsing with 70% ethanol. All of the operations from this point on should be carried out under strict aseptic conditions.
3. Using a 1 mL or 5 mL pipette, gently transfer the cell suspension to a 15 mL conical tube.
4. Slowly add 4 mL stem cell culture medium drop-wise, to the conical tube. Rinse the cryovial by adding and removing an additional 1 mL of medium and transfer the liquid to the 15 mL conical tube. Shake the conical tube gently to mix the cells while adding media. Do not break apart the aggregates into a single-cell suspension, as it is crucial to maintain the cells in aggregates.
5. Centrifuge the cells at 200 x g for 5 minutes.
6. Aspirate the supernatant and discard. Gently tap on the bottom of the tube to loosen the cell pellet.
7. Add 1 mL of stem cell culture medium with ROCK Inhibitor Y27632. Gently resuspend the pellet by pipetting up and down 2 to 3 times with a 1 mL tip. Do not over pipette, as it is crucial to maintain the cells in aggregates.
8. Aspirate the coating solution from the plates prepared in step 4 of the Protocol for Coating Plates section. Add 4 mL of stem cell culture medium with ROCK Inhibitor Y27632 to each of two 6 cm dishes.
9. Seed 0.5 mL of cell aggregates onto the dishes prepared in step 8.
10. Incubate the culture at 37°C in a suitable incubator. A 5% CO₂ in air atmosphere is recommended if using the medium described on this product sheet.

Subculturing Procedure

Cell culture dishes are coated with CellMatrix Basement Membrane Gel (ATCC® ACS-3035) to provide a surface for the attachment of iPSCs.

Coating Procedure:

1. Thaw CellMatrix Gel on ice and swirl gently to mix. Important: CellMatrix Gel will solidify in 15 to 30 minutes above 15°C. Keep CellMatrix Gel, vials and pipette tips on ice at all times to prevent CellMatrix Gel from solidifying. If air bubbles form, they may be eliminated by centrifuging CellMatrix Gel at 300 x g for 10 minutes at 2°C to 8°C.
2. Determine the appropriate volume per aliquot based on concentration and usage. Example: 2 mL of CellMatrix at 150 µg/mL is required to coat one 6-cm dish. To coat two 6-cm dishes, prepare as follows:
 \[\text{Dilute CellMatrix in DMEM:F12 to a working concentration of 150 µg/mL. For instance, if the protein concentration of CellMatrix (on certificate of analysis) is 14 mg/mL, then: } (4 \text{ mL}) \times (0.15 \text{ mg/mL})/(14 \text{ mg/mL}) = 0.043 \text{ mL. Therefore, add 43 } \mu\text{L CellMatrix directly in 4 mL cold DMEM: F-12 Medium.} \]
3. Cell culture dishes coated with CellMatrix Basement Membrane Gel should be incubated at 37°C for one hour. Aspirate coating solution and immediately plate the cells. It is critical that the coating does not dry out.

Volumes used in this protocol are for a 75 cm² flask.

Post thaw day 1, perform a 100% medium change and remove all cells that did not attach. Perform a 100% medium change every day. Passage the cells every 4 to 5 days (80% confluent) at an appropriate split ratio (a 1:4 split ratio is recommended). If the colonies are close to, or touching each other, the culture is overgrown. Overgrowth will result in differentiation.

ROCK Inhibitor Y27632 is not necessary each time the culture medium is changed. It is required when cells are recovering from thaw on CellMatrix Gel-coated dishes containing 5 mL Pluripotent Stem Cell XF/FF medium/6-cm dish.
This protocol is designed to passage stem cell colonies cultured in a 6 cm dish, using Stem Cell Dissociation Reagent (ATCC ACS-3010) to detach the cell colonies. The recommended split ratio is 1:4. Volumes should be adjusted according to the size and number of the tissue culture vessels to be processed.

Reconstitution of Stem Cell Dissociation Reagent:

Lyophilized proteins tend to be hygroscopic. Bring the vial of Stem Cell Dissociation Reagent to room temperature before opening. The vial should not be cool to the touch. Once opened, the lyophilized material should be stored desiccated. The specific activity of the reagent is found on the certificate of analysis. Dissolve the appropriate amount of Stem Cell Dissociation Reagent in DMEM: F-12 Medium to prepare a 0.5 U/mL working solution.

1. Dissolve the appropriate amount of Stem Cell Dissociation Reagent in DMEM: F-12 Medium to prepare a 0.5 U/mL working solution. **Example:** To prepare 40 mL of a 0.5 U/mL working solution: Specific activity of Stem Cell Dissociation Reagent (on certificate of analysis) = 1.46 U/mg (40 mL) x (0.5 U/mL)/(1.46 U/mg) = 13.7 mg
2. Warm an aliquot of Stem Cell Dissociation Reagent working solution to room temperature.
3. Aspirate and discard the stem cell culture medium.
4. Rinse the cell aggregates with 15 mL DMEM:F12.
5. Centrifuge the cell aggregates at 200 x g for 5 minutes.
6. Aspirate and discard the stem cell culture medium.
7. Add 2 mL of cell culture medium to the dish, and detach the cells by pipetting up and down 2 to 3 times with a 1 mL tip.
8. Take care not to over-pipette the culture into a single-cell suspension as single cells will not establish colonies after seeding.
9. Place the cells on CellMatrix Gel-coated dishes containing 5 mL Pluripotent Stem Cell XF/FF medium/6-cm dish.
10. Inoculate the culture at 37°C in a humidified 5% CO2/95% air incubator. Perform a 100% medium change every day. Passage the cells every 4 to 5 days (80% confluent).

Cryopreservation

For optimal results, cryopreserve stem cell colonies when the cell cultures are 80% confluent. This protocol is designed to cryopreserve stem cell colonies cultured in a 6 cm dish.

1. Detach stem cell colonies from the dish as described in the recommended subculturing protocol (steps 1-11). Gently tap the bottom of the tube to loosen the cell pellet.
2. Take the Stem Cell Freezing Media from storage and swirl to mix. Keep cold. Decontaminate by dipping in or spraying with 70% alcohol.
3. Aspirate the supernatant and discard.
4. Add 2 mL of cold Stem Cell Freezing Media to the tube. Gently resuspend the pellet by pipetting up and down 2 to 3 times with a 1 mL tip, maintaining the cell aggregates.
5. Immediately transfer 1 mL of the cell suspension into two labeled cryovials.
6. Freeze the cells gradually at a rate of -1°C/min until the temperature reaches -70°C to -80°C. A cryopreservation container (e.g., CoolCell® freezing container) may also be used.
7. The cells should not be left at -80°C for more than 24 to 48 hours. Once at -80°C, frozen cryovials should be transferred to the vapor phase of liquid nitrogen for long-term storage.
These cells are distributed for research purposes only. ATCC recommends that individuals contemplating commercial use of any cell line first contact the originating investigator to negotiate an agreement. Third party distribution of this cell line is discouraged, since this practice has resulted in the unintentional spreading of cell lines contaminated with inappropriate animal cells or microbes.

Appropriate safety procedures should always be used with this material. Laboratory safety is discussed in the current publication of the Biosafety in Microbiological and Biomedical Laboratories from the U.S. Department of Health and Human Services Centers for Disease Control and Prevention and National Institutes for Health.

The viability of ATCC® products is warranted for 30 days from the date of shipment, and is valid only if the product is stored and cultured according to the information included on this product information sheet. ATCC lists the media formulation that has been found to be effective for this strain. While other, unspecified media may also produce satisfactory results, a change in media or the absence of an additive from the ATCC recommended media may affect recovery, growth and/or function of this strain. If an alternative medium formulation is used, the ATCC warranty for viability is no longer valid.

This product is intended for laboratory research purposes only. It is not intended for any animal or human therapeutic or diagnostic use.

If use of this culture results in a scientific publication, it should be cited in that manuscript in the following manner: ATCC-HYR0103 Human Induced Pluripotent Stem (IPS) Cells (ATCC® ACS-1007™)

Additional information on this culture is available on the ATCC web site at www.atcc.org.