Antimicrobial Resistance: A Broad-Spectrum Health Crisis

Christine Fedorchuk, PhD
Microbiologist, ATCC

Credible Leads to Incredible™
About ATCC

- Founded in 1925, ATCC is a non-profit organization with HQ in Manassas, VA, and an R&D and Services center in Gaithersburg, MD
- World’s largest, most diverse biological materials and information resource for microbes – the “gold standard”
- Innovative R&D company featuring gene editing, microbiome, NGS, advanced models
- cGMP biorepository
- Partner with government, industry, and academia
- Leading global supplier of authenticated cell lines, viral and microbial standards
- Sales and distribution in 150 countries, 19 international distributors
- Talented team of 450+ employees, over one-third with advanced degrees
Overview

Introduction:
- What antimicrobial resistance is

History:
- Antibiotics and resistance in history
- Key events in modern medicine
- Current state of affairs

Mechanisms:
- How antibiotics work
- How resistance works
- How resistance spreads

Summary:
- Urgent threats
What Is Antimicrobial Resistance?

Antimicrobials: a drug or other agent used to treat infectious disease by inhibiting growth or killing the microorganism responsible for infection.

Antibacterials · Antivirals · Antifungals · Antiparasitics

Antimicrobial resistance (AMR): ability of a microorganism to avoid the effects of antimicrobials
Antibiotics and Resistance Throughout History

Resistance has been with us all along

- Antimicrobial compounds are produced by bacteria, fungi, and plants
 - Streptomycin: a potent, broad-spectrum antibiotic produced by *Streptomyces* bacteria (1),(2)
- Co-evolution of resistance: offense and defense
 - Late Pleistocene permafrost: 30,000 year old gene sequences with homology to resistance genes for tetracyclines, glycopeptides, and β-lactam antibiotics (3)
- Human medicinal use is ancient
 - Artemisinin: antimalarial compound produced by *Artemisia annua* plants (sweet wormwood) used in China for thousands of years (4)
 - Tetracyclines: broad-spectrum antibiotics produced by a variety of *Actinomycetes* soil bacteria; evidence of use found in human skeletal remains in ancient Sudanese tribes almost 2,000 years old (5),(6)

Penicillin was first discovered in 1928 and developed for clinical use by 1940.

Penicillin was in wide use in many areas by 1940-1945, and reports of resistance in *Staphylococcus aureus* strains began in hospitals in 1942.

Methicillin, a 2nd-generation β-lactam compound, was introduced in 1961; resistance was reported by 1962.

S. aureus strains, previously resistant to penicillin, developed additional mechanisms for resistance and became MRSA.
The Rise of Resistance

Events of Note

Key Events:
- 1962: Methicillin-resistant *Staphylococcus aureus* (MRSA)
- 1968: Erythromycin resistant *Streptococcus pneumoniae*
- 1988: Vancomycin-resistant *Enterococcus*
- 2000: Extensively-drug resistant Tuberculosis (XDR TB)
- 2002: Vancomycin-resistant *Staphylococcus aureus*
- 2004: Pan-drug resistant (PDR) *Acinetobacter* and *Pseudomonas*
- 2009: Pan-drug resistant (PDR) Enterobacteriaceae
The Rise of Resistance

Key Examples – Mycobacterium tuberculosis

- 2nd most common cause of death due to infection after HIV/AIDS
- Estimated mortality in 2018: 1.5 million deaths globally
- Estimated cases globally: 1.8 billion people
- Cases of resistant infections in 2018: 0.48 million
- Likelihood of treatment success:
 - Drug-Susceptible TB: 83%
 - MDR-TB: 54% (resistant to at least two frontline antibiotics)
 - XDR-TB: 30% (resistant to at least two frontline and two second-line antibiotics)
 - XDR-TB has been isolated in more than 127 countries
The Rise of Resistance

Key Examples – Mycobacterium tuberculosis

- 2nd most common cause of death due to infection after HIV/AIDS
- Estimated mortality in 2018: 1.5 million deaths globally
- Estimated cases globally: 1.8 billion people
- Cases of resistant infections in 2018: 0.48 million

Likelihood of treatment success:
- Drug-Susceptible TB: 83%
- MDR-TB: 54% (resistant to at least two front-line antibiotics)
- XDR-TB: 30% (resistant to at least two front-line and two second-line antibiotics)
- XDR-TB has been isolated in more than 127 countries

The Rise of Resistance

Key Examples – Methicillin-resistant Staphylococcus aureus (MRSA)

- Causes infections in the skin and soft-tissue (SSI), the endocardium, bloodstream, respiratory tract, bones, joints, and central nervous system
- Estimated cases do not include many SSIs
- MRSA infection rates were slowing, but progress has stalled

Antimicrobials are necessary for infections and to ensure the safety of modern medical procedures
- 1.7M adults develop sepsis every year in the US
- 1.2M cesarean sections were performed in 2017
- 30M people have diabetes and are at higher risk for infection
- 33,000 organ transplants were performed in 2016
- 500,000 people received dialysis treatment in 2016
- 650,000 people receive cancer chemotherapy each year

‘Superbugs’ and the new era
- Multidrug resistance: MDR pathogens resistant to multiple antimicrobials through acquired mechanisms
- Pan-drug resistance: PDR pathogens resistant to all available antimicrobials through acquired mechanisms (untreatable)
How Antibiotics Work

Classification by subcellular target
- Cell wall
- Cell membrane
- Protein biosynthesis
- Transcription
- Translation
- Other pathways

<table>
<thead>
<tr>
<th>Target</th>
<th>Class</th>
<th>Sub-Class</th>
<th>Mechanism of Action</th>
<th>Compounds (Examples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Wall</td>
<td>β-lactams</td>
<td>Carbapenems</td>
<td>Peptidoglycan biosynthesis inhibition</td>
<td>Ampicillin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cephalosporins Monobactams</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Penicillins</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>Glycopeptides Novel Classes</td>
<td>Inhibition of one of several steps in peptidoglycan biosynthesis</td>
<td>Vancomycin</td>
</tr>
<tr>
<td>Cell Membrane</td>
<td>Cyclic Peptides</td>
<td>Polymyxins</td>
<td>Disrupts membrane permeability</td>
<td>Colistin</td>
</tr>
<tr>
<td>Protein Biosynthesis</td>
<td>30S</td>
<td>Aminoglycosides Tetracyclines</td>
<td>Inhibition of translation through 30S rRNA</td>
<td>Streptomycin</td>
</tr>
<tr>
<td>Protein Biosynthesis</td>
<td>50S</td>
<td>Macrolides Lincosamides Streptogramins Chloramphenicol</td>
<td>Inhibition of translation through 50S rRNA</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>Protein Biosynthesis</td>
<td></td>
<td>Peptide Bond Formation</td>
<td>Inhibition of translation through initiation or elongation disruption</td>
<td>Linezolid</td>
</tr>
<tr>
<td>Nucleic Acids</td>
<td>Transcription</td>
<td>Rifamycins</td>
<td>Inhibition of transcription through RNA polymerase disruption</td>
<td>Rifampin</td>
</tr>
<tr>
<td>Nucleic Acids</td>
<td>DNA Replication</td>
<td>Quinalones</td>
<td>Inhibition of the DNA replication fork through disruption of type II topoisomerases</td>
<td>Ciprofloxacin</td>
</tr>
<tr>
<td>Nucleic Acids</td>
<td>DNA Structure</td>
<td>Nitroimidazoles Nitrofurans</td>
<td>Disruption of DNA structure through the production of free radicals</td>
<td>Metronidazole</td>
</tr>
<tr>
<td>Other Pathways</td>
<td>THF Synthesis</td>
<td>Sulfonamides Trimethoprim</td>
<td>Inhibition of tetrahydrofolic acid (THF) synthesis</td>
<td>Sulfamethoxazole</td>
</tr>
</tbody>
</table>
How Antibiotics Work: Cellular Integrity

- **Cell walls**: Gram-positive and Gram-negative bacteria
- **Peptidoglycan synthesis**
- **Membrane permeability**

<table>
<thead>
<tr>
<th>Cell Wall</th>
<th>β-lactams</th>
<th>Carbapenems, Cephalosporins, Monobactams, Penicillins</th>
<th>Peptidoglycan biosynthesis inhibition</th>
<th>Ampicillin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Wall</td>
<td>Other</td>
<td>Glycopeptides, Novel Classes</td>
<td>Inhibition of one of several steps in peptidoglycan biosynthesis</td>
<td>Vancomycin</td>
</tr>
<tr>
<td>Cell Membrane</td>
<td>Cyclic Peptides</td>
<td>Polymyxins</td>
<td>Disrupts membrane permeability</td>
<td>Colistin</td>
</tr>
</tbody>
</table>

How Antibiotics Work: Carbapenems

- Carbapenems: Activity of Imipenem in *Escherichia coli*
- Penicillin Binding Protein (PBPs) targets of Imipenem: PBP-1A, -1B, -2, -4, -5

<table>
<thead>
<tr>
<th>Cell Wall</th>
<th>β-lactams</th>
<th>Carbapenems Cephalosporins Monobactams Penicillins</th>
<th>Peptidoglycan biosynthesis inhibition</th>
<th>Ampicillin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Wall</td>
<td>Other</td>
<td>Glycopeptides Novel Classes</td>
<td>Inhibition of one of several steps in peptidoglycan biosynthesis</td>
<td>Vancomycin</td>
</tr>
<tr>
<td>Cell Membrane</td>
<td>Cyclic Peptides</td>
<td>Polymyxins</td>
<td>Disrupts membrane permeability</td>
<td>Colistin</td>
</tr>
</tbody>
</table>

How Antibiotics Work: Protein Biosynthesis

- **Protein biosynthesis**: three steps of peptide translation
 - Initiation (1)
 - Elongation (2)
 - Termination (3)

- **Ribosomal subunits**
 - 30S
 - 50S

Table: Antibiotic Mechanisms

<table>
<thead>
<tr>
<th>Category</th>
<th>Mechanism</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein Biosynthesis</td>
<td>30S Aminoglycosides Tetracyclines Inhibition of translation through 30S rRNA</td>
<td>Streptomycin</td>
</tr>
<tr>
<td>Protein Biosynthesis</td>
<td>50S Macrolides Lincosamides Streptogramins Chloramphenicol Inhibition of translation through 50S rRNA</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>Protein Biosynthesis</td>
<td>Peptide Bond Formation Oxazolidinones Mupirocin Inhibition of translation through initiation or elongation disruption</td>
<td>Linezolid</td>
</tr>
<tr>
<td>Other Pathways</td>
<td>THF Synthesis Sulfonamides Trimethoprim Inhibition of tetrahydrofolic acid (THF) synthesis</td>
<td>Sulfamethoxazole</td>
</tr>
</tbody>
</table>

Wilson, D., Nat Rev Microbiol 12, 35–48 (2014)
How Antibiotics Work: Macrolides

- **Macrolides**: Erythromycin in *Streptococcus pneumoniae*
- Erythromycin (Ery) binds the 50S subunit, causing premature translation termination

<table>
<thead>
<tr>
<th>Pathways</th>
<th>Protein Biosynthesis</th>
<th>Aminoglycosides</th>
<th>Inhibition of translation through</th>
<th>Antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein Biosynthesis</td>
<td>30S</td>
<td>Tetracyclines</td>
<td>30S rRNA</td>
<td>Macrolides</td>
</tr>
<tr>
<td>Protein Biosynthesis</td>
<td>50S</td>
<td>Macrolides</td>
<td>50S rRNA</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>Peptide Formation</td>
<td>Peptide Bond Formation</td>
<td>Oxazolidinones</td>
<td>Initiation or elongation disruption</td>
<td>Linezolid</td>
</tr>
<tr>
<td>Other Pathways</td>
<td>THF Synthesis</td>
<td>Sulfonamides</td>
<td>Inhibition of tetrahydrofolic acid (THF) synthesis</td>
<td>Sulfamethoxazole</td>
</tr>
</tbody>
</table>

Sulfonamides:
- Trimethoprim
- Sulfamethoxazole

Wilson, D., Nat Rev Microbiol 12, 35–48 (2014)
How Antibiotics Work: Nucleic Acids

- **DNA replication:**
 - Chromosomal tension

- **Topoisomerases**
 - Type II: cleave both DNA strands

<table>
<thead>
<tr>
<th>Nucleic Acids</th>
<th>Transcription</th>
<th>Rifamycins</th>
<th>Inhibition of transcription through RNA polymerase disruption</th>
<th>Rifampin</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA Replication</td>
<td>Quinalones</td>
<td>Inhibition of the DNA replication fork through disruption of type II topoisomerases</td>
<td>Ciprofloxacin</td>
<td></td>
</tr>
<tr>
<td>DNA Structure</td>
<td>Nitroimidazoles Nitrofurans</td>
<td>Disruption of DNA structure through the production of free radicals</td>
<td>Metronidazole</td>
<td></td>
</tr>
</tbody>
</table>

How Antibiotics Work: Quinolones

- Quinolones: Ciprofloxacin in *Escherichia coli*
- Ciprofloxacin binds DNA gyrase at the DNA replication fork

<table>
<thead>
<tr>
<th>Nucleic Acids</th>
<th>Transcription</th>
<th>Rifamycins</th>
<th>Inhibition of transcription through RNA polymerase disruption</th>
<th>Rifampin</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA Replication</td>
<td>Quinalones</td>
<td>Inhibition of the DNA replication fork through disruption of type II topoisomerases</td>
<td>Ciprofloxacin</td>
<td></td>
</tr>
<tr>
<td>DNA Structure</td>
<td>Nitroimidazoles</td>
<td>Nitrofurans</td>
<td>Disruption of DNA structure through the production of free radicals</td>
<td>Metronidazole</td>
</tr>
</tbody>
</table>

Types of Resistance Mechanisms:

- Decreased influx, accumulation, or uptake
- Active efflux pumps
- Enzymatic inactivation or destruction
- Modification to the antimicrobial target site
How Resistance Works: Decreased Influx

Porins: mediators of permeability
- Porin loss: transcription control, sequence mutation
- Porin function: channel conformation, size

Porin-mediated resistance in *Neisseria gonorrhoeae*
- PIB porin: mutations in *penB* gene change porin conformation
- Confers resistance to tetracyclines, penicillins, fluoroquinolones

References
How Resistance Works: Active Efflux

Efflux pump-mediated resistance in *Pseudomonas aeruginosa*

- MexAB-OprM system: RND (Resistance-nodulation-division) family of efflux pumps
- Multidrug efflux operon with homologs in many other pathogens
- Confers resistance to fluoroquinolones, macrolides, chloramphenicol, tetracyclines, β-lactams
Extended-spectrum β-lactamase (ESBL) enzyme-mediated resistance in *Enterobacteriaceae*

- ESBL type CTX is a class A β-lactamase found in *Escherichia coli, Salmonella enterica*, and other species
- Confers resistance to β-lactams; often cross-resistant to quinolones and trimethoprim/sulfamethoxazole

How Resistance Works: Target Site Modification

Methylated rRNA-mediated resistance in *Streptococcus pneumoniae*

- Methyltransferases: *erm* gene products catalyzes methylation of 50S subunit at different sites, changing macrolide binding site recognition
- Confers resistance to macrolides, lincosamides, and streptogramin (MLS antimicrobials)

Intrinsic resistance is the innate ability of an organism to resist the action of an antimicrobial as a result of structural or functional characteristics.

- Lack of susceptible physiology
- Permeability barriers
Spread of Resistance: Acquired Resistance

Horizontal gene transfer (HGT)
- Transformation: DNA
- Transduction: Phage
- Conjugation: Pilus

Mobile genetic elements (MGE)
- Plasmids
- Transposons
- Mobile gene cassettes
- Phage DNA

Mobile Genetic Elements
- Plasmids: Circles of DNA that can move between cells.
- Transposons: Small pieces of DNA that can go into and change the overall DNA of a cell. These can move from chromosomes (which carry all the genes essential for germ survival) to plasmids and back.
- Phages: Viruses that attack germs and can carry DNA from germ to germ.

www.cdc.org
Genetics of Resistance

Acquired Resistance - Mutation

- Mutation rates in prokaryotes: approximately 10^{-6}/base, per generation
- Point mutations – single base replacements
- Deletion – the removal of nucleotide bases or sequences
- Duplication – the production of one or more copies of a genetic sequence
- Inversion – the reversal of a genetic sequence
- Insertion – the addition of bases or sequences
- Translocation – the rearrangement of a genetic sequence
Urgent Threats

Carbapenem-resistant Acinetobacter baumannii

- **Acinetobacter** infections typically occur in health care settings and can be transmitted from person-to-person or contact with contaminated surfaces.

- **Pathology:** infections in the blood, urinary tract, lungs (pneumonia), or wounds.

- **Several known mechanisms of resistance**, including:
 - β-lactamases
 - Efflux pumps
 - Permeability defects
 - Aminoglycoside-modifying enzymes
 - Alteration of target sites
 - Inducible DNA damage response

PERCENT OF GERMS THAT TESTED NON-SUSCEPTIBLE (NOT SENSITIVE) TO OTHER TYPES OF ANTIBIOTICS

<table>
<thead>
<tr>
<th>Select Antibiotics</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any fluoroquinolone</td>
<td>98%</td>
<td>93%</td>
<td>97%</td>
<td>92%</td>
<td>89%</td>
</tr>
<tr>
<td>Any extended-spectrum β-lactam</td>
<td>80%</td>
<td>75%</td>
<td>81%</td>
<td>79%</td>
<td>75%</td>
</tr>
<tr>
<td>Ampicillin/sulbactam</td>
<td>62%</td>
<td>62%</td>
<td>59%</td>
<td>64%</td>
<td>61%</td>
</tr>
<tr>
<td>Trimethoprim/sulfamethoxazole</td>
<td>84%</td>
<td>74%</td>
<td>81%</td>
<td>77%</td>
<td>66%</td>
</tr>
</tbody>
</table>

www.cdc.gov
Urgent Threats

Multidrug-resistant Neisseria gonorrhoeae

- Gonorrhea has developed resistance to all but one class of antibiotics
- Pathology: a sexually transmitted infection (STI) that causes infertility, ectopic pregnancy, increased risk of HIV, and cardiovascular and nervous system complications
- Several known mechanisms of resistance, including:
 - β-lactamases
 - Chromosomal mutations
 - Efflux pumps
 - Changes in cell membrane permeability
 - rRNA methylases

www.cdc.gov
Antimicrobial resistance is a growing global health concern that threatens our ability to treat infection and perform essential medical procedures.

There are numerous mechanisms of resistance that have emerged throughout the years.

Resistance can occur due to the innate ability to resist the action of antimicrobials, or through acquired resistance via HGT or mutation.

With numerous multidrug-resistant strains emerging, it is more important than ever that new therapeutics and novel detection methods are developed.
Cultivating collaboration to support global health

Upcoming Webinar:
Antimicrobial Resistance: Arm Your Lab in the Fight Against Superbugs
- Presented by Christine Fedorchuk, Ph.D.
- February 27, 12:00 ET

Learn more:
www.atcc.org/globalprioritysuperbugs
www.atcc.org/superbugs