Neural Progenitor Cells: Better Biological Models of Neurodegenerative Disease

Brian Shapiro, Ph.D.
Technical Writer, ATCC
ATCC - Credible leads to Incredible

- ATCC has provided credible biomaterials for over 90 years
- We continue to cultivate collaboration
 - Among scientists across disciplines
 - Essential for accelerating innovative research
 - Leading to incredible, high-impact results.
- Our Cultivating Collaboration pledge: We bring scientists together to discuss
 - Breakthroughs in the state of science
 - Multidisciplinary approaches to key areas of research
 - Breaking the silos that impede research
- Our partnership with you, the scientific community, allows us all to reach the incredible
Agenda

Neural Progenitor Cells (NPCs) and Media

- Background information
- Differentiation potential of ATCC NPCs
- Toxicological studies
- Summary
Challenges associated with current models of the nervous system

- Primary cells from animals (mouse and rat neurons)
 - Not predictive
 - Donor variation

- Continuous cell lines (originally isolated from tumors)
 - Not normal
 - Not predictive

- Induced pluripotent stem cells (iPSCs; commercial or self-made)
 - Time and labor intensive
 - Often not validated for neural development
What is neurobiologists need in a better biological model

Advanced, biologically relevant models

- A true disease model
- Validated neural functioning
- Predictive for screening applications
Neural progenitor cells - Neuronal differentiation

NPCs:
- Shorten research time
- Human model
- Predictive screening

Embryoid body

6-8 weeks

Astrocyte

3-4 weeks

Neuron

2-3 weeks

Oligodendrocyte

6-7 weeks
NPCs: An advanced model of the nervous system

A better biological model:
- Human models with no donor variation
- Live imaging is possible
- Cells exhibit full differentiation spectrum
- Complete system of cells and media is available

More meaningful results:
- More biologically relevant results/more predictive system
- Parkinson’s NPCs better replicate the disease state *in vitro*
- Markers allow for easy endpoint readout
- Can differentiate to neuronal and glial cells
- Easy to use and saves time
<table>
<thead>
<tr>
<th>ATCC® No.</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS-3003™</td>
<td>NPC Growth Kit – add to DMEM/F12</td>
</tr>
<tr>
<td>ACS-3004™</td>
<td>NPC Dopaminergic Differentiation Kit – add to DMEM/F12</td>
</tr>
<tr>
<td>ACS-5001™</td>
<td>NPCs derived from ATCC-DYS0530 Parkinson’s Disease (ACS-1013) New!</td>
</tr>
<tr>
<td>ACS-5003™</td>
<td>NPCs derived from ATCC-BXS0117 (ACS-1031)</td>
</tr>
<tr>
<td>ACS-5004™</td>
<td>NPCs derived from ATCC-BYS0112 (ACS-1026)</td>
</tr>
<tr>
<td>ACS-5005™</td>
<td>Neural Progenitor Cells derived from XCL-1 DCX-GFP for late neuron differentiation</td>
</tr>
<tr>
<td>ACS-5006™</td>
<td>Neural Progenitor Cells derived from XCL-1 GFAP-Nanoluc®-Halotag® for astrocyte differentiation</td>
</tr>
<tr>
<td>ACS-5007™</td>
<td>Neural Progenitor Cells derived from XCL-1 MAP2-Nanoluc®-Halotag® for early neuron differentiation</td>
</tr>
<tr>
<td>ACS-2103F™</td>
<td>Screening Fee – For Profit</td>
</tr>
</tbody>
</table>

ATCC® ACS-1026 – iPSC derived from bone marrow CD34+ cell from Caucasian male
ATCC® ACS-1031 – iPSC derived from bone marrow CD34+ cell from Asian female

Reporter lines from iPSC derived from cord blood CD34+ from a Caucasian male (XL-1 iPSCs from NIH)
QC testing of ATCC® NPCs

- Post-thaw cell viability: >80%
- Post-thaw viable cell number: >1x10^6 cells/vial
- Longevity: >15 PDLs or 5 passages
- NPC marker expression: Nestin^+, Pax-6^+, and Tra-1-60^-
- Differentiation potential:
 - Tuj1^+ early neurons
 - TH^+ dopaminergic neurons
- Identity: STR profile matching parental iPSC line
- Sterility, mycoplasma, and viral panel testing: None detected
Agenda

Neural Progenitor Cells (NPCs) and Media

- Background information
- **Differentiation potential of ATCC NPCs**
- Toxicological studies
- Summary
ATCC normal NPCs express NPC markers but not iPSC markers

- NPC Marker
 - Nestin
 - Pax-6

- iPSC Marker
 - Tra-I-60
ATCC Parkinson’s NPCs express NPC markers but not iPSC markers.
Dopaminergic neuron differentiation of NPCs

TuJ1 TH/DAPI
Dopaminergic neuron differentiation of Parkinson’s disease NPCs

TuJ 1

TH

TH + DAPI
Astrocyte and oligodendrocyte differentiation

Astrocyte differentiation

GFAP

Oligodendrocyte differentiation

O4

ACS-5003

ACS-5001
Dopaminergic neuron differentiation of NPC reporter lines

A. c. D. F.

MAP2- NanoLuc®-HaloTag®
(ACS-5007)

DCX-GFP
(ACS-5005)

GFAP-NanoLuc®-HaloTag®
(ACS-5006)
Expression of the luciferase reporter during dopaminergic neuron or astrocyte differentiation

Luciferase secretion during dopaminergic neuron differentiation of NanoLuc®-HaloTag® NPCs

![Image of dopaminergic neuron](image)

Luciferase secretion during astrocyte differentiation of GFAP-NanoLuc®-HaloTag® NPCs

![Image of astrocyte](image)
Expression of the GFP or HaloTag® reporter during dopaminergic neuron or astrocyte differentiation

DCX-GFP (Live imaging)

GFAP-Nanoluc®-Halotag® (ICC)

MAP2-Nanoluc®-Halotag® (ICC)

+ Dopaminergic differentiation medium
Expression of genes associated with the differentiation of NPCs

TaqMan® primers were used to identify the presence of other types of neurons during dopaminergic neuron differentiation using ATCC® ACS-3004™ media

- Dopaminergic neurons: TH, NURR1, VMAT2, AADC
- Glutamatergic neurons: GLS2, vGLUT1, vGLUT2
- GABAergic neurons: GABA (GABRB3)
- Motor neurons: EN1, LIM3, and Hb9
- Cholinergic neurons: ChAT
Early and dopaminergic neuron gene expression

Upregulation of early and dopaminergic neuron genes in ACS-5001, ACS-5003, and ACS-5007 NPCs during dopaminergic neuron differentiation

NPC-derived dopaminergic neurons
Expression of early neuron gene MAP2

Dopaminergic Differentiation

Fold Induction of MAP2 mRNA

ACS-5003
ACS-5007

ACS-5001

0 1wk 2wk 3wk

MAP2

Dopaminergic Differentiation

Fold Induction of MAP2 mRNA

0 1wk 2wk 3wk

ACS-5001

**
Expression of dopaminergic neuron gene TuJ1

TuJ1

<table>
<thead>
<tr>
<th>Fold Induction of TuJ1 mRNA</th>
<th>Dopaminergic Differentiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS-5003</td>
<td>0</td>
</tr>
<tr>
<td>ACS-5007</td>
<td>1wk</td>
</tr>
<tr>
<td></td>
<td>2wk</td>
</tr>
<tr>
<td></td>
<td>3wk</td>
</tr>
</tbody>
</table>

TuJ1

<table>
<thead>
<tr>
<th>Fold Induction of TuJ1 mRNA</th>
<th>Dopaminergic Differentiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS-5001</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1wk</td>
</tr>
<tr>
<td></td>
<td>2wk</td>
</tr>
<tr>
<td></td>
<td>3wk</td>
</tr>
</tbody>
</table>
Expression of dopaminergic neuron gene TH

Dopaminergic Differentiation

Fold Induction of TH mRNA

TH

ACS-5003
ACS-5007

0 1wk 2wk 3wk

Fold Induction of TH mRNA

TH

ACS-5001

0 1wk 2wk 3wk
Expression of dopaminergic neuron gene NURR1

Dopaminergic Differentiation

Fold Induction of NURR1 mRNA

0 1wk 2wk 3wk

ACS-5003
ACS-5007

NURR1

Fold Induction of NURR1 mRNA

0 1wk 2wk 3wk

ACS-5001

NURR1

**
Expression of VMAT2

Fold Induction of VMAT2 mRNA

Dopaminergic Differentiation

VMAT2

Fold Induction of VMAT2 mRNA

Dopaminergic Differentiation

ACS-5003
ACS-5007

ACS-5001

**

*
Expression of DAT

Fold Induction of DAT mRNA

Dopaminergic Differentiation

![Graphs showing DAT induction over time and treatment with ACS-5003 and ACS-5007.](image)
Expression of AADC

AADC

Fold Induction of AADC mRNA

Dopaminergic Differentiation

ACS-5003
ACS-5007

0 1wk 2wk 3wk

Fold Induction of AADC mRNA

Dopaminergic Differentiation

ACS-5001

0 1wk 2wk 3wk
Gene expression other neuronal subtypes

<table>
<thead>
<tr>
<th>ATCC® No.</th>
<th>Gutamatergic</th>
<th>GABAergic</th>
<th>Motor</th>
<th>Cholinergic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GLS2</td>
<td>vGLUT1</td>
<td>vGLUT2</td>
<td>GABRB3</td>
</tr>
<tr>
<td>ACS-5001</td>
<td>+</td>
<td>++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>ACS-5003</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>ACS-5007</td>
<td>+</td>
<td>++</td>
<td>+++</td>
<td>++</td>
</tr>
</tbody>
</table>

- = no significant increase in expression after 3 weeks
+ = increased expression within 3 weeks, fold over control
Protein expression

Confirmation of protein expression in ACS-5007 NPCs during dopaminergic differentiation by immunocytochemistry

NPC-derived neurons
Confirmation of dopaminergic neuronal-specific protein expression during differentiation by immunocytochemistry
Agenda

Neural Progenitor Cells (NPCs) and Media
- Background information
- Differentiation potential of ATCC NPCs
- Toxicological studies
- Summary
Neurotoxicity studies – undifferentiated NPCs

ACS-5003 NPCs

Viability (% of Vehicle Control)

DMSO Control Paclitaxol Cisplatin Piperine Vincristine Hydroxyurea Amiodarone Chlorodexine

1 µM 10 µM 100 µM

* ** ***
Neurotoxicity studies – undifferentiated NPCs

ACS-5001 NPCs
Dose-response curves for cell viability of ACS-5003 ACS-5007 NPCs treated with paclitaxel for two days

![Graph showing dose-response curves for ACS-5003 and ACS-5007 NPCs treated with paclitaxel. The x-axis represents the log concentration of paclitaxel in µM, ranging from -3 to 5. The y-axis represents viability as a percentage of vehicle control, ranging from 0 to 100. The graph shows a decrease in viability with increasing concentration of paclitaxel.]
Neurotoxicity studies – NPCs-derived neurons

ACS-5007 NPCs-derived neurons

Viability (% of Vehicle Control)

- Paclitaxel
- Cisplatin
- Vincristine
- Hydroxyurea
- Amiodarone
- Chlorhexidine
- Pipeline
- DMSO control

Comparisons:
- 1 µM
- 10 µM
- 100 µM
High content imaging analysis of neurotoxicity in normal NPC-derived neurons

![Image of cellular imaging showing effects of different treatments on neuron morphology.](image1.png)

![Graph showing total neurite length per neuron for different treatments.](image2.png)
Overall neurotoxicity studies

<table>
<thead>
<tr>
<th>Toxin</th>
<th>ACS-5001 NPCs</th>
<th>ACS-5003 NPCs</th>
<th>NPC-derived neurons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiodarone</td>
<td>Toxic</td>
<td>Toxic</td>
<td>Toxic</td>
</tr>
<tr>
<td>Chlorhexidine</td>
<td>Toxic</td>
<td>Toxic</td>
<td>Toxic</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>Resistant</td>
<td>Weakly toxic</td>
<td>Resistant</td>
</tr>
<tr>
<td>Piperine</td>
<td>Resistant</td>
<td>Resistant</td>
<td>Resistant</td>
</tr>
<tr>
<td>Vincristine</td>
<td>Toxic</td>
<td>Toxic</td>
<td>Weakly toxic</td>
</tr>
<tr>
<td>Hydroxyurea</td>
<td>Resistant</td>
<td>Weakly Toxic</td>
<td>Resistant</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>Toxic</td>
<td>Toxic</td>
<td>Resistant</td>
</tr>
</tbody>
</table>
Agenda

Neural Progenitor Cells (NPCs) and Media

- Background information
- Differentiation potential of ATCC NPCs
- Toxicological studies
- Summary
NPCs - Summary

- Cells and media with easy to use protocols
 - Expansion and Differentiation Medium

- Human model with no donor variation
 - Ability to expand and bank

- Differentiation across a wide spectrum of neural and glial lineages
 - Neurons
 - Astrocytes
 - Oligodendrocytes

- Live imaging of differentiation
 - GFP expression upon neural differentiation
NPCs - Summary

- Our studies demonstrated that ATCC normal and PD NPCs have the potential to be differentiated into:
 - Dopaminergic neurons
 - GABAergic neurons
 - Glutamatergic neurons
 - Motor neurons
 - Cholinergic neurons
 after treatment of NPCs with ATCC dopaminergic differentiation media

- ATCC NPCs are suitable for drug screening applications
© 2018 American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise. NanoLuc®, HaloTag® and Promega are registered trademarks or trademarks of Promega Corporation. TaqMan® is a registered trademark of Roche Molecular Systems, Inc.
Cultivating collaboration to elevate biological models

Let’s continue to cultivate collaboration:

- Help us elevate our Better Biological Models
- Advanced biological models enable greater
 - Specificity
 - Functionality
- Join our community of early adopters
- Our partnership with you, the scientific community, allows us all to reach the incredible

2020.atcc.org/elevating-biological-models

for more information about becoming an early adopter of NPCs