Cell Culture 101 - Tips for Successful Cell Culture

Steven Budd, M.S., M.B.A.
Product Line Business Specialist, ATCC

Kevin Grady, B.S.
Product Line Business Manager, ATCC
About ATCC

- Founded in 1925, ATCC is a non-profit organization with headquarters in Manassas, VA
- World’s premiere biological materials resource and standards development organization
- ATCC collaborates with and supports the scientific community with industry-standard biological products and innovative solutions
- Strong team of 400+ employees; over one third with advanced degrees
Agenda

- Cell culture workflow - what cells to use
- Cell handling/media handling
- Transfection and analysis issues
- Viability assays
- Summary
Primary cells versus continuous cells

- Prepared directly from tissue
- Physiologically relevant
- Low risk for phenotypic or genotypic drift

Primary Cells

- Easy to propagate *in vitro*
- Easy to generate large quantities of cells
- Inexpensive to maintain

Continuous Cells
hTERT-immortalized primary cells

- Bypass replicative senescence by telomerase
- Maintain primary cell function with the lifecycle of a continuous cell line

Regulation of telomere length in normal and cancer cells by telomerase

Expert Reviews in Molecular Medicine ©2002 Cambridge University Press
Potential workflow situations: Standardization and validation

Use cell lines for standardization and confirmation of each experiment
- Large number of cells needed
- Samples with limited variability
- Generally easy to manipulate

Use primary cells after standardization to further validate the results
- Donor variability
- Biological relevance
Potential workflow situations: High-throughput screening

Screening work flow

- Initial screening in cell lines
 - Large number of cells needed
 - Samples with limited variability
- Next level in hTERT-immortalized primary cell lines
 - Large number of cells needed
 - Samples with limited variability
 - More physiologically relevant results
- Final screen in primary cells *(Results with the most biological relevance)*
Primary cells as a control

Continuous cell lines are cells isolated from primary tissue (often a tumor) that have mutated to survive a “crisis”

Continuous cell lines have deviated from original source

In every continuous cell line experiment, primary cells should be used as one of the controls

Primary neonatal keratinocytes (ATCC® PCS-201-010™) differentiated into physiological epidermis
Agenda

- Cell culture workflow - what cells to use
- Cell handling/media handling
- Transfection and analysis issues
- Viability assays
- Summary

HEK-293 (ATCC® CRL-1573™)
Thawing cells

- Thaw in 37°C water bath for approximately 2 minutes with gentle agitation
- Spray vial with 70% ethanol
- Transfer to 10 mL centrifuge tube with 9 mL of appropriate growth media (10% FBS)
- *Centrifuge, resuspend in 2 mL of growth media
- Transfer to cell culture vessel

When bringing out of liquid nitrogen, thaw as quickly as possible

*For certain primary cells, centrifugation may be detrimental, refer to specific protocol
Cell expansion

- After thawing, cells should be plated in an appropriate cell culture vessel with complete media
- 24 hours after seeding, check for confluence
- Note, primary cells may take up to several days to reach 80% confluency for subculturing
Cell expansion

Figure 1. Growth curve for cells grown in culture. Cells should be subcultured while still in the exponential phase.
Trypsinization

At 80% confluency (primary cells), cells can be passed using Trypsin-EDTA

- Using warm trypsin-EDTA for about 3-5 minutes, cells will detach with gentle agitation

- **Trypsin-EDTA for Primary Cells (ATCC® PCS-999-003™)** is a low concentration formula (.05% Trypsin and .002% EDTA) – necessary for primary cell survival

- A Trypsin Soybean Neutralizing Solution (ATCC® 30-2104™) is also needed to prevent cell damage
High levels of ice formation and increased solute concentration have a negative impact on cell viability.

- Optimal cooling rate for cell viability is 1 to 3°C/min.
Freezing down cells

-70°C

Controlled-rate freeze chamber

-1°C/min cooling rate

A few hours to 24 hours

-140°C

Liquid nitrogen tank
Low temperature storage

For the best security, always store your cells in liquid nitrogen freezers
Low temperature storage

Mammalian cells
Long-term storage should be below -140°C

Vials should be stored in a liquid nitrogen unit above the volume of liquid at the bottom of the tank

This temperature should be between -140°C and -180°C
Cell characterization

Characterizing cells

- Cell count before plating
 - Calculating % viability

- Morphology
 - Make sure the morphology is consistent with cell type

- Doubling time
 - Contamination from other cell types can affect growth rate

Fibroblasts

HUVEC
Contamination

Sources
- Contaminated cell lines
- Improper aseptic technique

Types
- Microbial – bacteria, mycoplasma, fungi, viruses
- Cellular – cross contamination

Signs
- Turbid media
- Rapid decline in pH – color change
- Morphological changes
- Filamentous structures
Mycoplasma contamination

Not easily detected
- Does not cause media turbidity
- Does not alter the pH of the media
- Few metabolic byproducts
- Cannot be detected by microscopy

Results in a number of deleterious effects
- Chromosomal aberrations
- Disruption of nucleic acid synthesis
- Changes in membrane antigenicity
- Inhibition of cell proliferation and metabolism
- Decreased transfection rates
- Changes in gene expression profiles
- Affects virus production
- Cell death
Contamination

Cross Contamination

Leads to the replacement of the original cell line with the contaminant

Causes

- Multiple cell lines under the hood at the same time
- Failure to change out pipettes
- Receiving cell lines from other labs

20% of scientific publications include misidentified cultures

50% of preclinical research is not reproducible

Cell characterization

Universal Mycoplasma Detection Kit

PCR-based kit (ATCC® 30-1012K™)

Detects any of the 60 most common mycoplasmas

ATCC STR Profiling

Ensures your cells are what you think they are

- STR profile of your cell line
- Comparison of your cells against ATCC STR Profile database at www.atcc.org/str
- Electropherograms supporting the allele calls at each locus
- Comprehensive interpretation of results
Contamination

Personnel and equipment
- Poor culturing practices
- Dust and aerosol

Contamination
- Aerosol dispersion of contaminated cell cultures
- Faulty laminar flow

Culture reagents
- Sera
- Media
- Reagents
Contamination prevention and aseptic technique

Good aseptic technique

- Make it difficult for microorganisms to invade culture vessels
 - Sealed cultured vessels
 - Vented cap flasks
- Disposable aspirators
 - Cell culture hoods with good laminar flow
 - Do not use as a storage area!
- Spray media bottles/reagents with alcohol
Contamination prevention and aseptic technique

- **Use small volumes of reagents at a time**
 - Aliquot stock solutions and reagents

- **Always wear clean lab coats and protective clothing**

- **Use seed stocks**
 - Create master stocks

- **Avoid using antibiotics in media!**
 - Can contribute to chronic contamination
 - Rarely prevents contamination
 - Toxic to cells
Media choices

Animal cell lines – media + 10% FBS

- Eagle’s Minimum Essential Medium (EMEM; ATCC® 30-2003™)
- Dulbecco’s Modified Eagle’s Medium (DMEM; ATCC® 30-2002™)
- Iscove’s Modified Dulbecco’s Medium (IMDM; ATCC® 30-2005™)
- Kaighn’s Modification of Ham’s F-12 Medium (ATCC® 30-2004™)
- DMEM/ F12 Medium (ATCC® 30-2006™)
- McCoy’s 5A (ATCC® 30-2007™)
- RPMI-1640 (ATCC® 30-2001™)
- Leibovitz’s L-15 (ATCC® 30-2008™)

Primary Cells – Primary Cell Basal Media and Growth Kits

- Primary cells require their own specially formulated media, specific to each cell type
Media choices

Media ingredients/additives

- Nonessential amino acids
 - Can be added to reduce the metabolic burden on cells

- L-glutamine
 - Present in ATCC Classical Cell Culture Media
 - Relatively stable in bottles kept at 4-8°C
 - *Glutamine degradation increases ammonia toxicity*
 - *Generally not recommended to “spike” media with L-glutamine*

- Antibiotics and antimycotics
 - Penicillin-streptomycin, gentamicin sulfate
 - Amphotericin B
 - *Generally not recommended*
Media choices

Special notes:

- Maintain cells in the same media
- Vendor to vendor media variability
 - Possible osmotic shock

- When transferring to new media:
 - Use 1:1 mix (50% old, 50% new media)
 - 1:2 mix
 - 1:3 mix
 - 1:7 mix

- Heat inactivation of FBS? Not recommended
Agenda

- Cell culture workflow - what cells to use
- Cell handling/media handling
- Transfection and analysis issues
- Viability assays
- Summary
Introduction to transfection

Method for introducing exogenous nucleic acid sequences into mammalian cells

Widely used technique that has made expressing DNA or RNA in most types of cells relatively easy

A variety of approaches have been developed for use across a range of applications

No single approach will work for all conditions/cell types/application
Transfection methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantages</th>
</tr>
</thead>
</table>
| **Lipid** | - Easy, most common method
 | - Variable efficiencies
 | - Will not work with all cell types |
| **Viral** | - Will transfec non-dividing cells
 | - Technically challenging, expensive
 | - Safety issues, immune response, mutagenesis |
| **Electroporation** | - Requires specialized equipment
 | - Cells must be in suspension
 | - Toxicity can be an issue |
| **Physical** | - Technically challenging, expensive
 | - Requires specialized equipment
 | - Works with non-nucleic acids; single cell transfection |
| **Other** | - Not common, may be technically challenging
 | - Non-lipid based chemicals
 | - Nanoparticles/laser/ultrasound/magnetic |
Mechanism of lipid-based transfection

Nucleic acid and cationic lipids form a complex

Nucleic acid-lipid complex enters cell

Sequences are released, enter nucleus

ATCC transfection reagents:
- GeneXPlus (ATCC® ACS-4004™)
- TransfeX™ (ATCC® ACS-4005™)
Typical transfection workflow

Day -1
Collect and seed cells into vessel where transfection will be performed

Day 0
Form transfection complexes by combining nucleic acid sequences and transfection reagent

Add transfection complexes to cells

Days 1+
Assess transfection

Diagram:
- Plasmid DNA
- Transfection reagent
- Complexes
- Cells (green)
Overexpression vs. knockdown

Introduce foreign plasmid DNA/mRNA to induce expression of a desired transcript/protein

Utilize RNAi pathway to degrade or inhibit translation of mRNA transcripts and subsequently reduce the amount of protein
Transient versus stable transfection

Transient
- Foreign gene not integrated into genome
- Expression persists for limited time
- Foreign gene lost due to cell division, degradation, or other factors

Stable
- Initially a transient transfection
- Use co-expressed selection markers
- Long term, only cells that have integrated the foreign gene persist
Transfection: Best practices

Areas of optimization:
- Culture conditions
- Nucleic acids
- Experimental design
- Assay method/timing
- Transfection reagent

?
Cell culture conditions

- Cell health
- Density
- Proliferation
- Media
Nucleic acids

All nucleic acids
- High purity
- Endotoxin free
- Validated

Plasmid DNA
- Promoter
- Plasmid size
- Conformation

RNA
- Chemical modifications
- Pooled siRNAs
Experimental design and execution

| Transfection protocol | • Use master mixes
|• Distribute complexes evenly
|• Store DNA/RNA properly |
|------------------------|--|
| Proper controls | • Positive and negative controls
|• Transfected and un-transfected controls |
| Monitor toxicity/off-target effects | • Morphological changes
|• Presence of vacuoles
|• Changes in proliferation |
| Validate results | • Multiple assays
|• For siRNA: test multiple sequences
|• For miRNA: increase & suppress |
Assay methods

- mRNA
 - Real time RT-PCR

- Protein
 - Indirect (e.g., enzymatic assays)
 - Reporter assays
 - Western blots
 - Immunocytochemistry
 - ELISA

- Other
 - Morphology
 - Functional
Assay timing

<table>
<thead>
<tr>
<th>Nucleic acid type</th>
<th>Changes at mRNA level</th>
<th>Changes at protein level</th>
</tr>
</thead>
<tbody>
<tr>
<td>siRNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>miRNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasmid DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mRNA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time post-transfection</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 hours</td>
</tr>
<tr>
<td>1-2 Days</td>
</tr>
<tr>
<td>5-6 Days</td>
</tr>
<tr>
<td>Weeks</td>
</tr>
</tbody>
</table>
Transfection reagents

- Transfection reagent
- Volume per reaction
- Incubation time
Optimal transfection

Healthy cells

High quality, validated sequences

Effective reagents

Minimum optimization
1. Seeding density
2. Volume of transfection reagent
3. Amount of DNA/RNA
Agenda

- Cell culture workflow - what cells to use
- Cell handling/media handling
- Transfection and analysis issues
- Viability assays
- Summary
Viability assays

Quantitative evaluation of cell proliferation rate and response to external factors that affect cell viability

- Commonly used for cytotoxicity, high-throughput screening (e.g., drug development)
- Uses tetrazolium salts in a colorimetric method for evaluating cell populations

MTT Cell Proliferation Assay (ATCC® 30-1010K™)
- Tetrazolium MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide)

XTT Cell Proliferation Assay (ATCC® 30-1011K™)
- Tetrazolium XTT (sodium 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium
Viability assays

MTT Reaction

MTT salt is **reduced** within cellular matrix to Formazan, lysed with detergent to solubilize crystals.

Media turns **PURPLE**

![Diagram of MTT Reaction](image)

XTT Reaction

XTT salt is **reduced** at cell membrane with PMS agent.

Media turns **ORANGE**

![Diagram of XTT Reaction](image)

NADH NAD⁺ → Formazan (MTT)

NADH NAD⁺ → Formazan (XTT)
Viability assays

MTT Assay
- Cells in 96 well plate with stimulus
- Add MTT reagent
- 2 hour incubation
- Add detergent
- 2 - 4 hour incubation (or longer)

XTT Assay
- Cells in 96 well plate with stimulus
- Add XTT reagent + activation agent
- 2 - 4 hour incubation
Viability assays
Agenda

- Cell culture workflow - what cells to use
- Cell handling/media handling
- Transfection and analysis issues
- Viability assays
- Summary
Disclaimers

© American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise.
Thank you for joining today!

Register for more ATCC webinars at www.atcc.org/webinars

Learn more about transfection at www.atcc.org/transfection

For more information about cell health visit www.atcc.org/cellhealth

Please email additional questions to: tech@atcc.org