Trichomonas vaginalis Donne (ATCC® 30001)

Strain Designations: C-1:NIH  /  Depositor: LS Diamond  /  Biosafety Level: 2

Permits and Restrictions

View Permits

Strain Designations C-1:NIH
Application Produces glucokinase
Produces ketohexokinase fructokinase
Maltose utilization
Biosafety Level 2

Biosafety classification is based on U.S. Public Health Service Guidelines, it is the responsibility of the customer to ensure that their facilities comply with biosafety regulations for their own country.

Isolation Vaginal exudate from human adult female with acute vaginitis, 1956
Product Format frozen
Storage Conditions Frozen Cultures:
-70°C for 1 week; liquid N2 vapor for long term storage

Freeze-dried Cultures:

Live Cultures:
See Protocols section for handling information
Type Strain no
Phylogeny based upon superoxide dismutase gene sequence analysis
Diagnosis of Trichomonas vaginalis by PCR methods
Inorganic pyrophosphatase
Hydrogenosomal succinate thiokinase
Glucokinase and fructokinase
Differences in strains virulence
Maltose utilization
Carbon metabolism based on carbon source
Carbohydrate metabolism in chemostats
Antioxidant defenses
Metronidazole radical anion generation
Primary structure of the pyruvate:ferredoxin oxidoreductase
Primary structure of the hydrogenosomal malic enzyme
Response of lymphocytes
Fructose-2,6-bisphosphate-insensitive pyrophosphate:fructose-6-phosphate phosphotransferase
A linear double-stranded RNA
Viability at four temperatures
Extranuclear DNA
Effect of oxygen and carbon dioxide on growth
Virus RNAs
Properties of a secondary alcohol dehydrogenase
Cytochemistry of hydrogenosomal enzymes
Ferredoxin-dependent reduction of nitroimidazole derivatives
Subcellular localization of enzymes of the arginine dihydrolase pathway
In vitro susceptibility to metronidazole
Medium ATCC® Medium 2154: LYI Entamoeba medium
ATCC® Medium 361: Modified TYM basal medium (ATCC medium 358) with pH adjusted to 6.0 and 0.2-0.5 ml of heat-inactivated horse serum added per tube before use
Growth Conditions
Temperature: 35°C
Atmosphere: Microaerophilic
Culture System: Axenic; pH 6
Cryopreservation Harvest and Preservation
  1. Harvest cells from a culture that is at or near peak density by centrifugation at 800 x g for 5 min. The cells grown in a medium containing agar are concentrated by centrifugation, a solid pellet does not form. The soft pellet is resuspended to desired cell concentration with agar-free supernatant.
  2. Adjust the concentration of cells to 2 x 106 - 2 x 107/mL in fresh medium.
  3. While cells are centrifuging prepare a 10% (v/v) solution of sterile DMSO in fresh medium.
    1. Add 1.0 mL of DMSO to an ice cold 20 x 150 mm screw-capped test tube;
    2. Place the tube on ice and allow the DMSO to solidify (~5 min) and then add 9.0 mL of ice cold medium;
    3. Invert several times to dissolve the DMSO;
    4. Allow to warm to room temperature.
  4. Mix the cell preparation and the DMSO in equal portions. Thus, the final concentration will be 106 - 107 cells/mL and 5% (v/v) DMSO. The time from the mixing of the cell preparation and DMSO stock solution before the freezing process is begun should no less than 15 min and no longer than 30 min.
  5. Dispense in 0.5 mL aliquots into 1.0 - 2.0 mL sterile plastic screw-capped cryules (special plastic vials for cryopreservation).
  6. Place the vials in a controlled rate freezing unit.  From room temperature cool at -1°C/min to -40°C.  If the freezing unit can compensate for the heat of fusion, maintain rate at -1°C/min through the heat of fusion.  At -40°C plunge into liquid nitrogen. Alternatively, place the vials in a Nalgene 1°C freezing apparatus.  Place the apparatus at -80°C for 1.5 to 2 hours and then plunge ampules into liquid nitrogen.  (The cooling rate in this apparatus is approximately -1°C/min.)  
  7. The frozen preparations should be stored in either the vapor or liquid phase of a nitrogen refrigerator. Frozen preparations stored below -130°C are stabile indefinitely. Those stored at temperatures above -130°C are progressively less stabile as the storage temperature is elevated. Vials should not be stored above -55°C.
  8. To establish a culture from the frozen state place an ampule in a water bath set at 35°C. Immerse the vial just to a level just above the surface of the frozen material. Do not agitate the vial.
  9. Immediately after thawing, do not leave in the water bath, aseptically remove the contents of the ampule and inoculate a 16 x 125 mm screw-capped test tube containing either 9 mL of ATCC medium 361 (completed with serum) or 13 mL ATCC Medium 2154 adjusted to pH 6.0.
  10. Incubate the culture at 35ºC with the cap screwed on tightly (tube should be vertical for medium 361 or on a 15º horizontal slant for medium 2154).


Name of Depositor LS Diamond
Special Collection NCRR Contract
Chain of Custody
ATCC <-- LS Diamond <-- TA Burch/L.V. Reardon <-- L Jacobs
Year of Origin 1956

Searle SM, Muller M. Inorganic pyrophosphatase of Trichomonas vaginalis. Mol. Biochem. Parasitol. 44: 91-96, 1991. PubMed: 1849232

Lloyd D, Pedersen JZ. Metronidazole radical anion generation in vivo in Trichomonas vaginalis: oxygen quenching is enhanced in a drug-resistant strain. J. Gen. Microbiol. 131: 87-92, 1985. PubMed: 2985740

Jenkins TM, et al. Hydrogenosomal succinate thiokinase in Tritrichomonas foetus and Trichomonas vaginalis. Biochem. Biophys. Res. Commun. 179: 892-896, 1991. PubMed: 1898409

Mertens E, Muller M. Glucokinase and fructokinase of Trichomonas vaginalis and Tritrichomonas foetus. J. Protozool. 37: 384-388, 1990. PubMed: 2213652

Reardon LV, et al. Differences in strains of Trichomonas vaginalis as revealed by intraperitoneal injections into mice. J. Parasitol. 47: 527-532, 1961. PubMed: 13740097

Hrdy I, Muller M. Primary structure and eubacterial relationships of the pyruvate:ferredoxin oxidoreductase of the amitochondriate eukaryote Trichomonas vaginalis. J. Mol. Evol. 41: 388-396, 1995. PubMed: 7563125

ter Kuile BH, Muller M. Maltose utilization by extracellular hydrolysis followed by glucose transport in Trichomonas vaginalis. Parasitology 110: 37-44, 1995. PubMed: 7845710

ter Kuile BH. Carbohydrate metabolism and physiology of the parasitic protist Trichomonas vaginalis studied in chemostats. Microbiology 140: 2495-2502, 1994. PubMed: 7952199

ter Kuile BH. Adaptation of the carbon metabolism of Trichomonas vaginalis to the nature and availability of the carbon source. Microbiology 140: 2503-2510, 1994. PubMed: 7952200

Ellis JE, et al. Antioxidant defences in the microaerophilic protozoan Trichomonas vaginalis: comparison of metronidazole-resistant and sensitive strains. Microbiology 140: 2489-2494, 1994. PubMed: 7952198

Yarlett N, et al. Metronidazole-resistant clinical isolates of Trichomonas vaginalis have lowered oxygen affinities. Mol. Biochem. Parasitol. 19: 111-116, 1986. PubMed: 3487729

Hrdy I, Muller M. Primary structure of the hydrogenosomal malic enzyme of Trichomonas vaginalis and its relationship to homologous enzymes. J. Eukaryot. Microbiol. 42: 593-603, 1995. PubMed: 7581334

Muller M, Lindmark DG. Uptake of metronidazole and its effect on viability in Trichomonads and Entamoeba invadens under anaerobic and aerobic conditions. Antimicrob. Agents Chemother. 9: 696-700, 1976. PubMed: 1083712

Yarlett N, et al. Subcellular localization of the enzymes of the arginine dihydrolase pathway in Trichomonas vaginalis and Trtrichomonas foetus. J. Eukaryot. Microbiol. 41: 554-559, 1994. PubMed: 7866382

Yano A, et al. Antigen-specific proliferation responses of peripheral blood lymphocytes to Trichomonas vaginalis antigen in patients with Trichomonas vaginalis. J. Clin. Microbiol. 17: 175-180, 1983. PubMed: 6601112

Lloyd D, et al. Metronidazole-resistant clinical isolates of Trichomonas vaginalis maintain low intracellular metronidazole radical anion levels as a consequence of defective oxygen scavenging. Biologica 30: 521-528, 1988.

Mertens E, et al. Presence of a fructose-2,6-bisphosphate-insensitive pyrophosphate: fructose-6-phosphate phosphotransferase in the anaerobic protozoa Tritrichomonas foetus, Trichomonas vaginalis and Isotricha prostoma. Mol. Biochem. Parasitol. 37: 183-190, 1989. PubMed: 2558319

Wang AL, Wang CC. A linear double-stranded RNA in Trichomonas vaginalis. J. Biol. Chem. 260: 3697-3702, 1985. PubMed: 2982874

Smith RF. Viability of Trichomonas vaginalis in vitro at four temperatures. J. Clin. Microbiol. 18: 834-836, 1983. PubMed: 6605364

Turner G, Muller M. Failure to detect extranuclear DNA in Trichomonas vaginalis and Tritrichomonas foetus. J. Parasitol. 69: 234-236, 1983. PubMed: 6600788

Mack SR, Muller M. Effect of oxygen and carbon dioxide on the growth of Trichomonas vaginalis and Tritrichomonas foetus. J. Parasitol. 64: 927-929, 1978. PubMed: 309937

Gelbart SM, et al. Growth of Trichomonas vaginalis in commercial culture media. J. Clin. Microbiol. 28: 962-964, 1990. PubMed: 2351739

Tai JH, et al. The divergence of Trichomonas vaginalis virus RNAs among various isolates of Trichomonas vaginalis. Exp. Parasitol. 76: 278-286, 1993. PubMed: 8500587

Kleiner DE, Johnston M. Purification and properties of a secondary alcohol dehydrogenase from the parasitic protozoan Tritrichomonas foetus. J. Biol. Chem. 260: 8038-8043, 1985. PubMed: 3159722

Goosen NK, et al. Effect of fixation on activity and cytochemistry of hydrogenosomal enzymes in Trichomonas vaginalis. J. Gen. Microbiol. 136: 2189-2193, 1990. PubMed: 1706759

Yarlett N, et al. Ferredoxin-dependent reduction of nitroimidazole derivatives in drug-resistant and susceptible strains of Trichomonas vaginalis. Biochem. Pharmacol. 35: 1703-1708, 1986. PubMed: 3486660

Viscogliosi E, et al. Phylogenetic implication of iron-containing superoxide dismutase genes from trichomonad species. Mol. Biochem. Parasitol. 80: 209-214, 1996. PubMed: 8892298

Roger AJ, et al. A possible mitochondrial gene in the early-branching amitochondriate protist Trichomonas vaginalis. Proc. Natl. Acad. Sci. USA 93: 14618-14622, 1996. PubMed: 8962102

Lloyd D, Kristensen B. Metronidazole ingibition of hydrogen production in vivo in drug-sensitive and resistant strains of Trichomonas vaginalis. J. Gen. Microbiol. 131: 849-853, 1985.

Vanacova S, et al. Characterization of Trichomonad species and strains by PCR fingerprinting. J. Eukaryot. Microbiol. 44: 545-552, 1997. PubMed: 9435127

Harmych SE, et al. Lactate dehydrogenase from the protozoan parasite, Trichomonas vaginalis. Comp. Biochem. Physiol. 115B: 405-409, 1996.

ter Kuile BH. Metabolic adaptation of Trichomonas vaginalis to growth rate and glucose availability. Microbiology 142: 3337-3345, 1996. PubMed: 9004498

Ter Kuile BH, Muller M. Interaction between facilitated diffusion of glucose across the plasma membrane and its metabolism in Trichomonas vaginalis. FEMS Microbiol. Lett. 110: 27-32, 1993. PubMed: 8319891

Madico G, et al. Diagnosis of Trichomonas vaginalis infection by PCR using vaginal swab samples. J. Clin. Microbiol. 36: 3205-3210, 1998. PubMed: 9774566

van Leeuwen F, et al. beta-D-glucosyl-hydroxymethyluracil is a conserved DNA modification in kinetoplastid protozoans and is abundant in their telomeres. Proc. Natl. Acad. Sci. USA 95: 2366-2371, 1998. PubMed: 9482891

Keeling PJ, et al. Linked genes for calmodulin and E2 ubiquitin-conjugating enzyme in Trichomonas vaginalis. J. Eukaryot. Microbiol. 43: 468-474, 1996. PubMed: 8976604

Marinets A, et al. The sequence and organization of the core histone H3 and H4 genes in the early branching amitochondriate protist Trichomonas vaginalis. J. Mol. Evol. 43: 563-571, 1996. PubMed: 8995053

Keeling PJ, et al. Evolutionary relationship between translation initiation factor eIF-2gamma and selenocysteine-specific elongation factor SELB: change of function in translation factors. J. Mol. Evol. 47: 649-655, 1998. PubMed: 9847405

Edgell DR, et al. Evidence of independent gene duplications during the evolution of archael and eukaryotic family B DNA polymerases. Mol. Biol. Evol. 15: 1207-1217, 1998. PubMed: 9729885

Mertens E, et al. The pyrophosphate-dependent phosphofructokinase of the protist, Trichomonas vaginalis, and the evolutionary relationships of protist phosphofructokinases. J. Mol. Evol. 47: 739-750, 1998. PubMed: 9847416

Wu G, et al. Convergent evolution of Trichomonas vaginalis lactate dehydrogenase from malate dehydrogenase. Proc. Natl. Acad. Sci. USA 96: 6285-6290, 1999. PubMed: 10339579

Viscogliosi E, Mueller M. Phylogenetic relationships of the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase, from parabasalid flagellates. J. Mol. Evol. 47: 190-199, 1998. PubMed: 9694668

Archibald JM, et al. Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes. Mol. Biol. Evol. 17: 1456-1466, 2000. PubMed: 11018153

Bouma MJ, et al. Activity of disulfiram (bis(diethylthiocarbamoyl)disulphide) and ditiocarb (diethyldithiocarbamate) against metronidazole-sensitive and -resistant Trichomonas vaginalis and Tritrichomonas foetus. J. Antimicrob. Chemother. 42: 817-820, 1998. PubMed: 10052908

Tachezy J, et al. Cattle pathogen Tritrichomonas foetus (Riedmuller, 1928) and pig commensal Tritrichomonas suis (Gruby & Delafond, 1843) belong to the same species. J. Eukaryot. Microbiol. 49: 154-163, 2002. PubMed: 12046599

Sanchez LB, et al. Fructose-1,6-bisphosphate aldolases in amitochondriate protists constitute a single protein subfamily with eubacterial relationships. Gene 295: 51-59, 2002. PubMed: 12242011

Gerbod D, et al. Phylogenetic relationships of class II fumarase genes from trichomonad species. Mol. Biol. Evol. 18: 1574-1584, 2001. PubMed: 11470849

Cornelius DC, et al. Short report: genetic relatedness of Trichomonas vaginalis reference and clinical isolates. Am. J. Trop. Med. Hyg. 83: 1283-1286, 2010.

Cross References

Nucleotide (GenBank) : Z70670 T.vaginalis sod1 gene.

Nucleotide (GenBank) : Z70671 T.vaginalis sod2 gene.

Nucleotide (GenBank) : Z70672 T.vaginalis sod3 gene.

Nucleotide (GenBank) : Z70673 T.vaginalis sod4 gene.

Nucleotide (GenBank) : Z70674 T.vaginalis sod5 gene.

Nucleotide (GenBank) : M33717 T.vaginalis ferredoxin gene, complete cds.

Nucleotide (GenBank) : U57000 chaperonin 60 (cpn60) mRNA, partial coding sequence

Nucleotide (GenBank) : AF067404 DNA polymerase epsilon gene, partial coding sequence

Nucleotide (GenBank) : X98016 histone H4-2 and histone H3-2, partial coding sequence

Nucleotide (GenBank) : U27577 Trichomonas vaginalis polyubiquitin (UbA) mRNA, partial cds.

Nucleotide (GenBank) : U28008 Trichomonas vaginalis ubiquitin 1A (Ub1A) gene, partial cds.

Nucleotide (GenBank) : U28009 Trichomonas vaginalis ubiquitin 1C (Ub1C) gene, partial cds.

Nucleotide (GenBank) : U28010 Trichomonas vaginalis ubiquitin 1D (Ub1D) gene, partial cds.

Nucleotide (GenBank) : U28011 Trichomonas vaginalis ubiquitin 1E (Ub1E) gene, partial cds.

Nucleotide (GenBank) : U28012 Trichomonas vaginalis ubiquitin dimer 2B (Ub2B) gene, partial cds.

Nucleotide (GenBank) : U70308 Trichomonas vaginalis mitochondrial-type HSP70 mRNA, complete cds.

Nucleotide (GenBank) : U38692 Trichomonas vaginalis cytosolic malate dehydrogenase gene, complete cds.

Nucleotide (GenBank) : U28013 Trichomonas vaginalis polyubiquitin junction JC (UbJC) gene, partial cds.

Nucleotide (GenBank) : AF060233 Trichomonas vaginalis L-lactate dehydrogenase (LDH1) gene, complete cds.

Nucleotide (GenBank) : AF058282 Trichomonas vaginalis elongation factor 1 alpha (tef1) mRNA, partial cds.

Nucleotide (GenBank) : L11394 Trichomonas vaginalis glyceraldehyde 3-phosphate dehydrogenase mRNA, 3' end.

Nucleotide (GenBank) : U07784 Trichomonas vaginalis ATCC 30001 ferredoxin (FD) gene, Inr promoter element.

Nucleotide (GenBank) : M97553 Trichomonas vaginalis succinyl-CoA synthetase beta-subunit gene, complete cds.

Nucleotide (GenBank) : U07785 Trichomonas vaginalis ATCC 30001 P-glycoprotein (Pgp1) gene, promoter element.

Nucleotide (GenBank) : AF022421 glyceraldehyde-3-phosphate dehydrogenase (gap3) gene, partial coding sequence

Nucleotide (GenBank) : U07782 Trichomonas vaginalis ATCC 30001 beta-tubulin (beta-Tub) gene, promoter element.

Nucleotide (GenBank) : U07780 Trichomonas vaginalis ATCC 30001 alpha-tubulin (alpha-Tub) gene, promoter element.

Nucleotide (GenBank) : U07203 Trichomonas vaginalis hydrogenosomal adenylate kinase proprotein gene, complete cds.

Nucleotide (GenBank) : U16836 Trichomonas vaginalis hydrogenosomal malic enzyme subunit A (maeA) gene, complete cds.

Nucleotide (GenBank) : AF022414 Trichomonas vaginalis glyceraldehyde-3-phosphate dehydrogenase (gap2) gene, partial cds.

Nucleotide (GenBank) : AF005075 translation initiation factor 2 gamma subunit (eIF-2 gamma) gene, partial coding sequence

Nucleotide (GenBank) : U38786 calmodulin (CAM) and E2 ubiquitin-conjugating enzyme (TvUBC) genes, partial coding sequence

Nucleotide (GenBank) : AF053370 PPi-dependent fructose 6-phosphate 1-phosphotransferase (pfk3) gene, partial coding sequence

Nucleotide (GenBank) : U16822 Trichomonas vaginalis pyruvate:ferredoxin oxidoreductase proprotein (pfoA) gene, complete cds.

Nucleotide (GenBank) : U16823 Trichomonas vaginalis pyruvate:ferredoxin oxidoreductase proprotein (pfoB) gene, complete cds.

Nucleotide (GenBank) : U16838 Trichomonas vaginalis hydrogenosomal malic enzyme subunit C proprotein (maeC) gene, partial cds.

Nucleotide (GenBank) : U16839 Trichomonas vaginalis hydrogenosomal malic enzyme subunit D proprotein (maeD) gene, partial cds.

Nucleotide (GenBank) : U16837 Trichomonas vaginalis hydrogenosomal malic enzyme subunit B proprotein (maeB) gene, complete cds.

Nucleotide (GenBank) : U07783 Trichomonas vaginalis ATCC 30001 70kDa cystolic heat shock protein (cHSP70 gene), promoter element.

Nucleotide (GenBank) : AF044973 pyrophosphate-dependent fructose 6-phosphate 1-phosphotransferase (Pfk1) gene, complete coding sequence

Nucleotide (GenBank) : AF053371 Trichomonas vaginalis PPi-dependent fructose 6-phosphate 1-phosphotransferase (pfk2) gene, partial cds.

Nucleotide (GenBank) : U07781 Trichomonas vaginalis ATCC 30001 succinyl CoA synthetase beta subunit (beta-SCS) gene, Inr promoter element.

Nucleotide (GenBank) : U07779 Trichomonas vaginalis ATCC 30001 succinyl CoA synthetase alpha subunit (alpha-SCSB) gene, Inr promoter element.

Notice: Necessary PermitsPermits

These permits may be required for shipping this product:

  • Customers located in the state of Hawaii will need to contact the Hawaii Department of Agriculture to determine if an Import Permit is required. A copy of the permit or documentation that a permit is not required must be sent to ATCC in advance of shipment.
Basic Documentation