

Genomic Data Quality:

Connecting the Dots Between Bioinformatics and Physical Materials

Jonathan Jacobs, PhD Senior Director, Bioinformatics BioNexus Principal Scientist ATCC

Credible Leads to Incredible™

About ATCC...

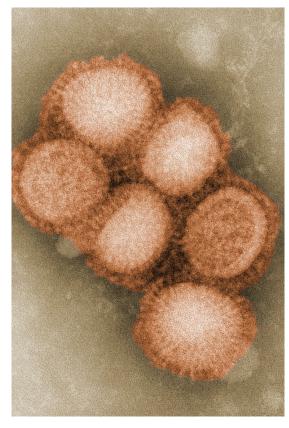
- American Type Culture Collection founded in 1925
- Non-profit institution with a mission to develop biomaterials, resources, and standards critical for life science research.
- World's largest, most diverse biological materials and information resource for microbes and cell lines (BEI & ATCC)
 - 32,000 bacterial strains
 - 46,000 mycology strains
 - 11,000 human / animal cell lines
 - 5,300 virus strains
 - 3,400 protistology strains
- cGMP biorepository & biomanufacturing

- Global supplier of authenticated cell lines, microorganisms, and molecular standards
- Innovative R&D company focused on biomaterial and genome engineering, cellbased model systems development and cryopreservation technologies.
- Sales and distribution to 150+ countries, with 19 international distributors

https://genomes.atcc.org

https://www.atcc.org/about-us/what-we-do

Microbiology Resources


A vast collection of microbial reference materials for molecular diagnostics

Well-characterized bacteria, viruses, fungi, protists, and derivatives

SARS-CoV-2 (and other pathogens) molecular Dx materials

- Genomic RNA from clinical isolates
- Synthetic nucleic acids for use in BSL-1 facilities
- Microbial strains for cross-reactivity testing
- Heat-inactivated preparations for use in molecular assays or as a process control
- Microbiome Standards
 - Fully sequenced, characterized, and authenticated mock microbial communities
 - Mixed whole-cell or genomic material
 - Even or standard mixes
 - Bacteriome, virome, or mycobiome
- Drug resistant bacterial strains

www.atcc.org/microbes

Custom Services

Providing secure & reliable biomaterials management, storage & distribution

Partner with the global biological resource leader

cGMP & cGTP Cell Banking:

- 21 CFR 600, 610, Good Manufacturing Practices (cGMP)
- 21 CFR Part 1271, Good Tissue Practices (cGTP)
- Mammalian and stem cells
- Primary cell derivation and expansion
- Custom-built, designated cell processing suites
- Healthy cells and cells derived from diseased tissues
- Master and working cell banks (MCB and WCB)

cGMP Biorepository

- ISO 9001:2008, cGMP-compliant
- LN₂, -80°C, -20°C, and 2-8°C storage available
- Cell, microbe, protein, and nucleic acid storage options
- Cell line and microbe expansion (MCB & WCB)

www.atcc.org/cGMP


Cell Biology Resources

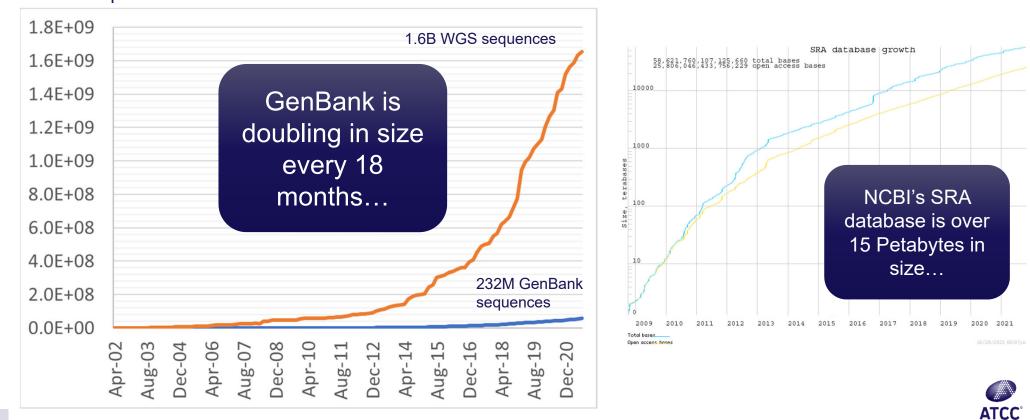
The world's largest and most extensive product catalog of human and animal cells

Authenticated cell lines, advanced models, and derivatives

- Reference samples for detecting somatic 2 mutations
 - Characterized triple-negative breast cancer cell line and its B lymphocytederived normal cell line
- Tumor/normal matched pairs
 - Matched normal and tumorigenic or metastatic cell lines
- Isogenic cell models that contain mutations in key oncogenes
 - KRAS G13D, NRAS Q61K, MEK 1Q56P, IDH1 R132H, IDH2 R140Q, and EML4/ALK fusion mutated cell lines available
 - Luciferase-labeled models for easy bioluminescence detection
- Epithelial/mesenchymal transition reporter cell lines for real time imaging of phenotypic transition
- Quantified cell line genomic DNA isolated from normal and tumor cell lines

www.atcc.org/cancer

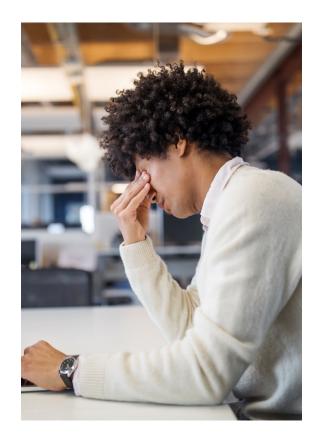
Today's Focus


- Open questions on genomics data quality
- Examples
- Why it matters
- What can you do about it
- What are we doing about it at ATCC

First – a reminder on the growth of GenBank –

1.6B sequences in WGS 232M sequences in GenBank

How sustainable is the growth of GenBank?


How reliable is the data in GenBank?

How do you build trust in a data ecosystem this large?

ATCC

- "Over a quarter of foodborne microbiological samples in the public sequence database are missing key metadata attributes." [1]
- "35% of [sample] information is being lost from the publication to the [data] repository." [2]
- 1 in 12 scientists have falsified results within the last 3 years. [3]
- 1. Pettengill, J. B. et al. (2021) 'Interpretative labor and the bane of non-standardized metadata in public health surveillance and food safety', Clinical Infectious Diseases, p. ciab615. doi: 10.1093/cid/ciab615.
- 2. Rajesh, A. et al. (2021) 'Improving the completeness of public metadata accompanying omics studies', Genome Biology, 22(1), pp. 106, s13059-021-02332-z. doi: 10.1186/s13059-021-02332-z.
- 3. Gopalakrishna, G. et al. (2021) Prevalence of responsible research practices and their potential explanatory factors: a survey among academic researchers in The Netherlands. preprint. MetaArXiv. doi: <u>10.31222/osf.io/xsn94</u>.

#1: Fake data was first deposited into GenBank in 1995

"Mr. Hajra, former graduate student, University of Michigan, engaged in scientific misconduct by falsifying and fabricating research data in five published research papers, two published review articles, one submitted but unpublished paper, in his doctoral dissertation, and in a submission to the GenBank computer data base." – The Federal Register, v62, n135 (1997)

Gevernment Gevernment GPO

Federal Register / Vol. 62, No. 135 / Tuesday, July 15, 1997 / Notices

author of the application is identified and that person's role in the project is identified. 20 points

4. Organizational Experience. The application identifies the qualifying experience of the organization to demonstrate the applicant's ability to effectively and efficiently administer this project. The application specifically identifies the applicant as a nationallyrecognized organization, institution, or company with a record of study and analysis of rural and special transportation needs. Previous specific experience with work similar to the Tasks proposed is clearly and specifically described. The relationship between this project and other work planned, anticipated, or underway by the applicant is described, including a chart which lists all related Federal assistance received within the last five years. In the event a consortium of applicants is proposed, the project history of prior joint work should be provided. The previous Federal assistance is identified by project number, Federal agency, and grants or contracting officer. 25 points

Components of a Complete Application

- A complete application consists of the following items in this order: 1. Application for Federal Assistance
- (Standard Form 424, REV 4–88); 2. Budget Information—Non-
- construction Programs (Standard Form 424A, REV 4–88);
- 3. Assurances—Non-construction Programs (Standard Form 424B,
- REV 4-88);

Dated: July 9, 1997. David F. Garrison, Principal Deputy Assistant Secretary for Planning and Evaluation. [FR Doc. 97–18528 Filed 7–14–97; 8:45 am] BILLING COE 4151-04-M

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Office of the Secretary

Findings of Scientific Misconduct

AGENCY: Office of the Secretary, HHS. ACTION: Notice.

SUMMARY: Notice is hereby given that the Office of Research Integrity (ORI) has made a final finding of scientific misconduct in the following case:

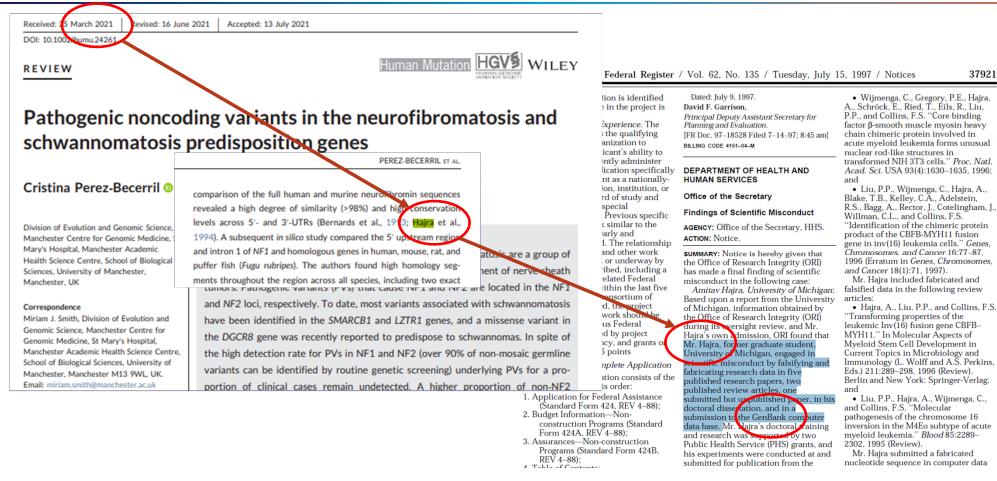
Amitav Hajra, University of Michigan Based upon a report from the University of Michigan, information obtained by the Office of Research Integrity (ORI) during its oversight review, and Mr. Haira's own admission. ORI found that Mr. Hajra, former graduate student, University of Michigan, engaged in scientific misconduct by falsifying and fabricating research data in five published research papers, two published review articles, one ubmitted but unpublished paper, in his doctoral dissertation, and in a submission to the GenBank computer data base. Mr. Hajra's doctoral training and research was supported by two Public Health Service (PHS) grants, and his experiments were conducted at and submitted for publication from the

• Wijmenga, C., Gregory, P.E., Hajra, A., Schröck, E., Ried, T., Eils, R., Liu, P.P., and Collins, F.S. "Core binding factor β -smooth muscle myosin heavy chain chimeric protein involved in acute myeloid leukemia forms unusual nuclear rod-like structures in transformed NIH 3T3 cells." *Proc. Natl. Acad. Sci.* USA 93(4):1630–1635, 1996; and

37921

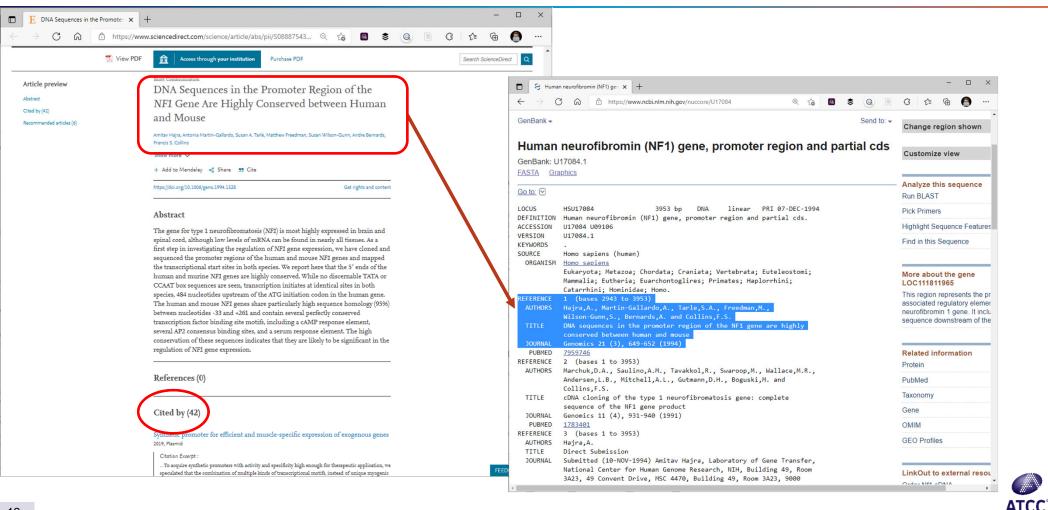
 Liu, P.P., Wijmenga, C., Hajra, A., Blake, T.B., Kelley, C.A., Adelstein, R.S., Bagg, A., Rector, J., Cotelingham, J., Willman, C.L., and Collins, F.S.
"Identification of the chimeric protein product of the CBFB-MYH11 fusion gene in inv(16) leukemia cells." *Cenes, Chromosomes, and Cancer* 16:77–87.
1996 (Erratum in *Genes, Chromosomes, and Cancer* 18(1):71, 1997).

Mr. Hajra included fabricated and falsified data in the following review articles:


• Hajra, A., Liu, P.P., and Collins, F.S. "Transforming properties of the leukemic Inv(16) fusion gene CBFB-MYH11." In Molecular Aspects of Myeloid Stem Cell Development in Current Topics in Microbiology and Immunology (L. Wolff and A.S. Perkins, Eds.) 211:289–298, 1996 (Review). Berlin and New York: Springer-Verlag; and

 Liu, P.P., Hajra, A., Wijmenga, C., and Collins, F.S. "Molecular pathogenesis of the chromosome 16 inversion in the M4Eo subtype of acute myeloid leukemia." *Blood* 85:2289– 2302, 1995 (Review).

Mr. Hajra submitted a fabricated nucleotide sequence in computer data


24 years later, it's still being cited...

TCC

37921

And after 42 citations... the data is still in GenBank...

#2: Falsified sequencing to support a false phylogeny

Biochemical Systematics and Ecology Volume 96, June 2021, 104263

Scientific data laundering: Chimeric mitogenomes of a sparrowhawk and a nightjar covered-up by forged phylogenies

George Sangster ^a ^A [⊠], Jolanda A. Luksenburg ^{b, c} [⊠]

Show more \checkmark

📃 Outline 🛛 + Add to Mendeley 🗠 Share 🗦 Cite

https://doi.org/10.1016/j.bse.2021.104

Highlights

"The evidence indicates that Liu et al. (2017) published phylogenies that were not based on existing data **but were fabricated to reflect preconceived ideas** about phylogenetic

• This manuscript pre relationships." – Sangster & Luksenburg (2021)

Liu and colleagues in a paper in *Biochemical Systematics and Ecology* in 2017 is not an authentic sequence of this species but represents a chimera of three different species (a Sangster, G. and Luksenburg, J.A. (2021) 'Scientific data laundering: Chimeric mitogenomes of a sparrowhawk and a nightjar covered-up by forged phylogenies', *Biochemical Systematics and Ecology*, 96, p. 104263. doi:10.1016/j.bse.2021.104263.

Unfortunately the falsified mitogenome is still in GenBank...

UNVERIFIED: Accipiter gularis mitochondrion sequence

GenBank: KX585864.1

FASTA Graphics

<u>Go to:</u> 🕑

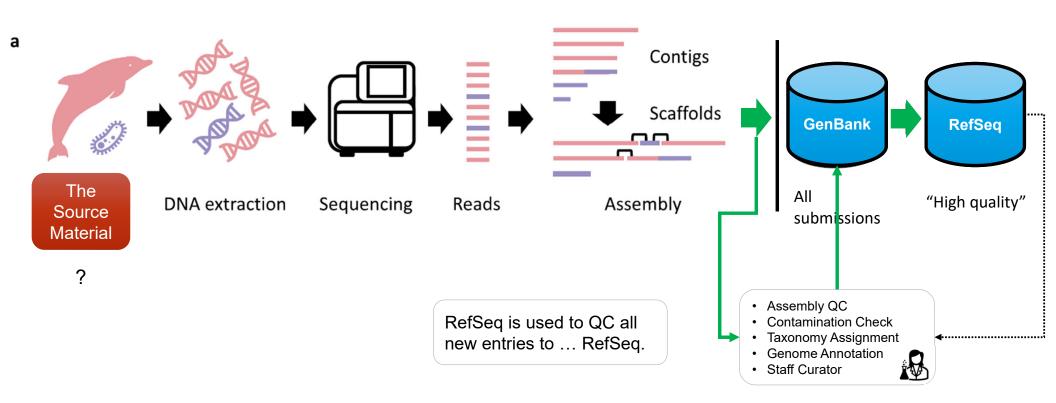
LOCUS DEFINITION ACCESSION					
VERSION	KX585864.1				
KEYWORDS	UNVERIFIED; UNVERIFIED_ORGANISM.				
SOURCE	mitochondrion Accipiter gularis (Japanese sparrowhawk)				
ORGANISM					
	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;				
	Archelosauria; Archosauria; Dinosauria; Saurischia; Theropoda;				
	Coelurosauria; Aves; Neognathae; Accipitriformes; Accipitridae;				
	Accipitrinae; Accipiter.				
REFERENCE	1 (bases 1 to 17918)				
AUTHORS	Liu,G.				
TITLE	The complete mtDNA of Accipiter gularis				
JOURNAL	Unpublished				
REFERENCE	2 (bases 1 to 17918)				
AUTHORS	Liu,G.				
TITLE	Direct Submission				
JOURNAL	,,,,				
CONVENT	University, 81 Meishan Rd, Hefei, Anhui 230032, China				
COMMENT	GenBank staff is unable to verify source organism and sequence				
FFATURES.	and/or annotation provided by the submitter.				
FEATURES	Location/Qualifiers				
sourc	e 117918				
4					

NCBI staff labeled this as "Unverified", but the sequence still remains in GenBank...

#3: Intentional falsification is rare... but... accidents happen right?

	irds in nic Sciences		Research		221 - Published by Cold Spring Harbor Laboratory Press	
COMMENTARY OF	en Access			thousands of sp		
<text><text><section-header><text><text><text><text><text></text></text></text></text></text></section-header></text></text>	Steinegger and Sakberg Genome I https://doi.org/10.1186/s13059-02 METHOD Terminating search iden	g contamination: large-scale tifies more than <u>2,000,000</u> ed entries in GenBank	Florian P. Breitwier and Steven L. Salz 'Certer for Computational De Biology Open Access Deeck for Deeck	eer, ¹ Mihaela Pertea, ^{1,2} Al berg ^{1,2,3,4} Wolgy, McKusick-Nathans Institute of retment of Computer Science, Whitin artiment of Biometical Engineening, Jc Stoomberg School of Public Health, Jc Stoomberg School of Public Health, Jo Stad Gababae reveals that 2250 gene rely from high-copy human repeat rej ce genome, GRCh38. The absence of in bacterial asemblise. Is some case scillar sequences, which over time haw darayots genemes. As a result, 3483 veten databases. We report here an o sassociated with them. We found it	eksey V. Zimin, ^{1,3} Genetic Medicine, Johns Hopkins School of Medicine, Bal g School of Engineering, Johns Hopkins University, Baltim Inns Hopkins Turvesity, Baltimore, Maryland 21218, US hnns Hopkins University, Baltimore, Maryland 21218, US natuse numerous problems for downstream analysis, par urlarge-cale scan of complete and draft bacterial and arch mes are contaminated by human sequence. The contamin glons, which themselves are not adequately represented In the sequences from the human assembly offers a likely ex § the contaminanting contigs have been erroneously annoto s purpose protein entriks are currently present in the wis responsated to commaniant sequences in bacterial genome tart nearly all contaminants occurred in small contigs in in draft genome assemblies may millingate the size of cont	rore, A: A: A: aeal artic- aeal aead aead aead aead articlongo adatbases articlongo articlongo adatbases articlongo adatbases articlongo articlongo adatbases articlongo adatbases articlongo adatbases articlongo adatbases articlongo adatbases articlongo adatbases articlongo adatbases articlongo adatbases articlongo adatbases articlongo adatbases articlongo adatbases articlongo adatbases articlongo adatbases articlongo adatbases attriclongo adatbases attriclongo attr
Correspondence: supatimultile/jeegibligov Correspondence: s		Introduction		Jow@gmail.com, salzberg@jhu.edu . Adicle, supdemental materia[.ard publi- me.org/cg/doi/10.1101/gr.245373.118.	C 2019 Peritviserer et al. This article is distributed escluively by latefor Laboratory Pesis for the first is month after the Likaus date (see http://genore.cs.thp.org/his/intel.cem.html). All the http://genore.cs.thp.org/his/intel.cem.html. All International), as described at http://creativecommon. by-m24.0/.	

#4: Poor quality genomes result in taxonomic misclassification


Multiple papers (more than the two listed here) have found widespread misclassification in GenBank

16

A Genomic Catch 22

17

Adapted from: Steinegger, M. and Salzberg, S.L. (2020) 'Terminating contamination: large-scale search identifies more than 2,000,000 contaminated entries in GenBank', Genome Biology, 21(1), p. 115. doi:10.1186/s13059-020-02023-1.

Genomics data quality issues impact many disciplines

FACTORS

- Misclassification of sequences
- Chimeric genome assemblies
- Sample contamination
- Sequencing errors
- Mislabeling or data errors
- Data omission
- Data obfuscation
- Intentional misconduct

Genomics data quality issues impact many disciplines

FACTORS

- Misclassification of sequences
- Chimeric genome assemblies
- Sample contamination
- Sequencing errors
- Mislabeling or data errors
- Data omission
- Data obfuscation
- Intentional misconduct

Critically Impacted Areas

- Basic Research (hypothesis generation)
- Biodiversity and environmental sciences
- Diagnostics & Epidemiology
- Forensics
- Food Safety
- Biodefense
- Many other areas...

Open questions...

What is the <u>cost</u> of poor-quality data in public genome databases?


What are the consequences for sharing "bad data"?

What can you do?

20

4 Ways to Improve the Quality of your Genomics Research

1. Trust but Verify

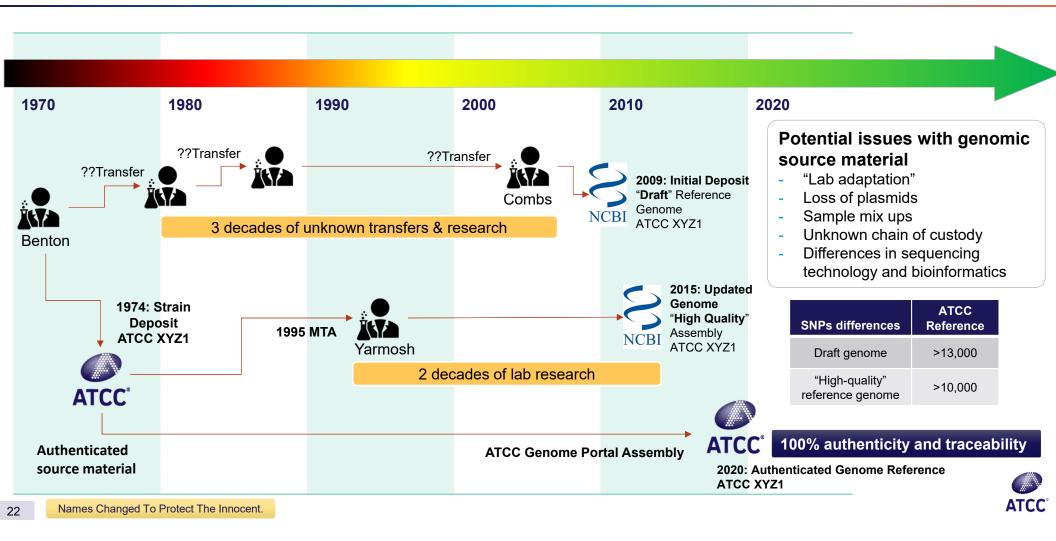
- Use authenticated source materials whenever possible.
- Be curious and investigate origins of data from outside your lab.

2. Be a Standards Champion

- Know what material or data standards are available for you.
- Get involved in defining new ones.

3. Assume It's Dirty

- Data is rarely "clean".
- Public data is often not "correct" and almost never "perfect".


4. Adopt a "Digital First" Mindset

- Involve bioinformatics and data science early, not "after the data is produced".
- Standardize your pipelines ahead of time.
- Have an eye for quality and reproducibility.

Trust but Verify

Use authenticated source materials whenever possible.

Champion Standards

Know what standards are available for you. Get involved in defining new ones.

PERSPECTIVE

nature biotechnology

The minimum information about a genome sequence (MIGS) specification

Dawn Field^{*1}, George Garrity², Tanya Gray¹, Norman Morrison^{3,4}, Jeremy Selengut⁵, Peter Sterk⁶, Tatiana Tatusova⁷, Nicholas Thomson⁸, Michael J Allen⁹, Samuel V Angiuoli^{5,10}, Michael Ashburner¹¹, Nelson Axelrod⁵, Sandra Baldauf¹², Stuart Ballard¹³, Jeffrey Boore¹⁴, Guy Cochrane⁶, James Cole², Peter Dawyndt¹⁵, Paul De Vos^{16,17}, Claude dePamphilis¹⁸, Robert Edwards^{19,20}, Nadeem Faruque⁶, Robert Feldman²¹, Jack Gilbert⁹, Paul Gilna²², Frank Oliver Glöckner²³, Philip Goldstein²⁴, Robert Guralnick²⁴, Dan Haft⁵, David Hancock^{3,4}, Henning Hermjakob⁶, Christiane Hertz-Fowler⁸, Phil Hugenholtz²⁵, Ian Joint⁹, Leonid Kagan⁵, Matthew Kane²⁶, Jessie Kennedy²⁷, George Kowalchuk²⁸, Renzo Kottmann²³, Eugene Kolker^{29–31}, Saul Kravitz⁵, Nikos Kyrpides³², Jim Leebens-Mack³³, Suzanna E Lewis³⁴, Kelvin Li⁵, Allyson L Lister^{35,36}, Phillip Lord³⁵, Natalia Maltsev²⁰, Victor Markowitz³⁷, Jennifer Martiny³⁸, Barbara Methe⁵, Ilene Mizrachi⁷, Richard Moxon³⁹, Karen Nelson^{5,40}, Julian Parkhill⁸, Lita Proctor²⁶, Owen White¹⁰, Susanna-Assunta Sansone⁶, Andrew Spiers⁴², Robert Stevens³, Paul Swift¹, Chris Taylor⁶, Yoshio Tateno⁴³, Adrian Tett¹, Sarah Turner¹, David Ussery⁴⁴, Bob Vaughan⁶, Naomi Ward⁴⁵, Trish Whetzel⁴⁶, Ingio San Gil⁴¹, Gareth Wilson¹ & Anil Wipat^{35,36}

With the quantity of genomic data increasing at an exponential rate, it is imperative that these data be captured electronically, in a standard format. Standardization activities must proceed within the auspices of open-access and international working bodies. To tackle the issues surrounding the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports

can manipulate it to provide new solutions to critical problems. Such solutions include therapies and cures for disease, industrial products, approaches for biodegradation of xenobiotic compounds and renewable energy sources. With improvements in sequencing technologies, the growing interest in metagenomic approaches and the proven power of comparative analysis of groups of related genomes, we can envision the day when it will be commonplace to sequence tens to hundreds of genomes or more as part of a single study. At current rates of genome sequencing, it has been estimated that >4,000 bacterial genomes will be available soon after 2010 (ref. 1).

Given the importance of the growing genome collection, the capital investment in its creation and the benefits of leveraging its value "Source material identifier" is an exception; the GSC recommends this be a core descriptor, but as yet, physical archives are not yet routinely created for all cases or types of biological material subjected to genome sequencing ...

This was in 2008.

We agree, but...

12 years later "*physical archives are [still] not yet routinely created*" by groups doing whole genome sequencing.

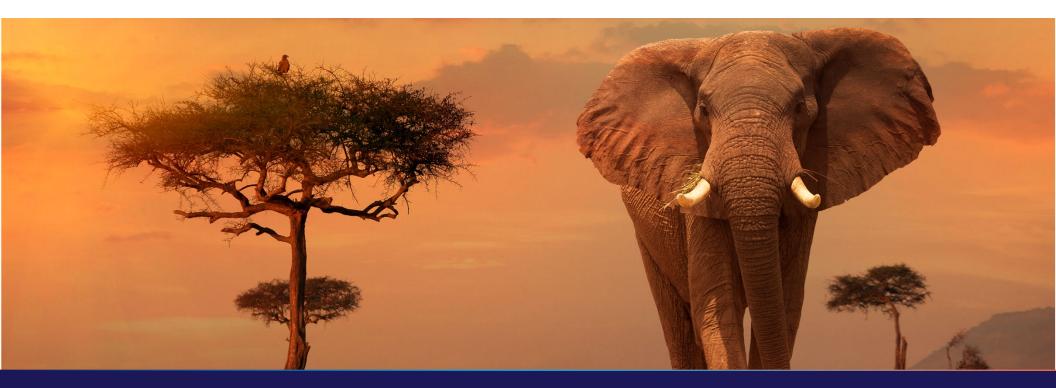
Data provenance for genomics data and the chain of custody for the original biomaterials is poorly documented (if at all).

Field, D. *et al.* (2008) 'The minimum information about a genome sequence (MIGS) specification', *Nature Biotechnology*, 26(5), pp. 541–547. doi: <u>10.1038/nbt1360</u>.

2008

Assume It's Dirty Data is rarely "clean". Public data is often not "correct".

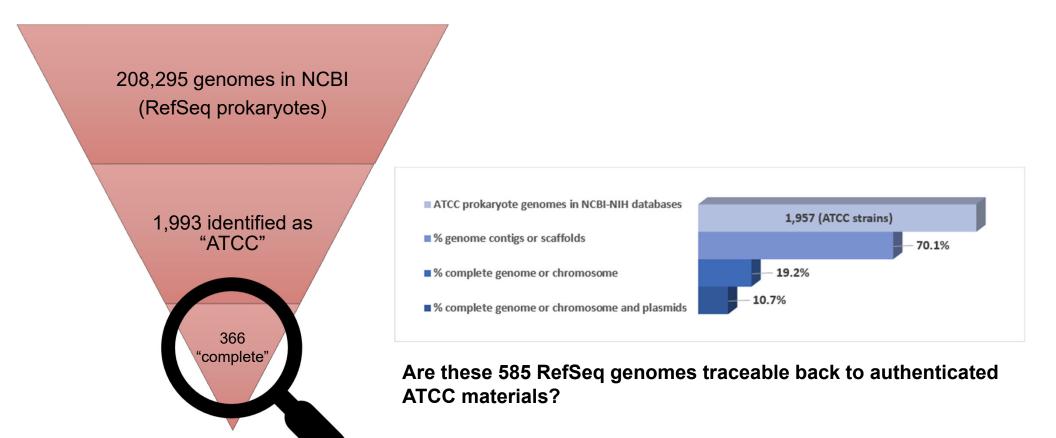
Product	NCBI existing reference genomes	NCBI assembly level (plasmids)	Sequencing technology and coverage	# of SNPs	# of indels	Average coverage (variants)	
	GCA_001593425.2	Complete Genome	Illumina (300.0x)	14	5	210.1	<u> </u>
	GCA_000015425.1*	Complete Genome (2)	Not available	118	656	152.7	- 1 strain
	GCA_014672775.1	Complete Genome (1)	PacBio (399.24x)	15	87	170.4	r strain
Acinetobacter baumannii	GCA_013372085.1	Complete Genome (2)	Illumina, Nanopore (80x)	14	2	210.2	7 assemblies
(ATCC [®] 17978™)	GCA_004797155.2	Complete Genome (2)	PacBio (247.19x)	28	62	162.1	
	GCA_001077675.1	Complete Genome (1)	Illumina, PacBio (153x)	15	6	135.9	origin for all source materials
	GCA_011067065.1	Complete Genome (2)	PacBio (231.08x)	60227	2486	165.6	materiale
Candida albicans	GCA_015227795.1	3, 081 Contigs	NovaSeq (16x)	10174	1573	265.6]
(ATCC [®] 10231™)	GCA_002276455.1	2,219 Scaffolds	HiSeq (95x)	13408	2390	274.6	
Meyerozyma	GCF_000149425.1	9 RefSeq Scaffolds	Not available	505	1973	278.2	
<i>guilliermondii</i> (ATCC [®] 6260™)	GCA_006942155.1	9 Contigs	ONT+MiSeq (240x)	74	386	223.3	
Clavispora lusitaniae	GCF_000003835.1	9 RefSeq Scaffolds	Not available	587	2336	265.6	
(ATCC [®] 42720 [™])	GCA_003675505.1	109 Scaffolds	NextSeq (182x)	102	5142	236.9	



Adopt a "Digital First" Mindset

Involve bioinformatics and data science early. Standardize your pipelines ahead of time.

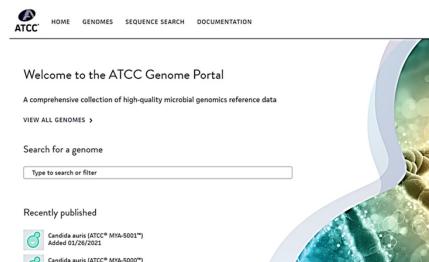
The Elephant in the Room is Data Quality and Provenance.



The ATCC Genome Portal

27

How many "ATCC" strains are in RefSeq?



ATCC's Enhanced Authentication Initiative

Our approach to producing authenticated reference genomes

- 2017-2018 Planning and proof-of-concept experiments
- 2018 Commitment
 - Laboratory and staffing resources
 - Instrumentation
 - Bioinformatics pipelines
- 2019 Launch of the Enhanced Authentication Initiative
 - June 2019 beta launch at ASM Microbe
 - Sept 2019 formal launch of the ATCC Genome Portal
 - Provide our customers with the whole-genome sequences of the specific, authenticated materials researchers need to generate credible data
 - o genomes.atcc.org

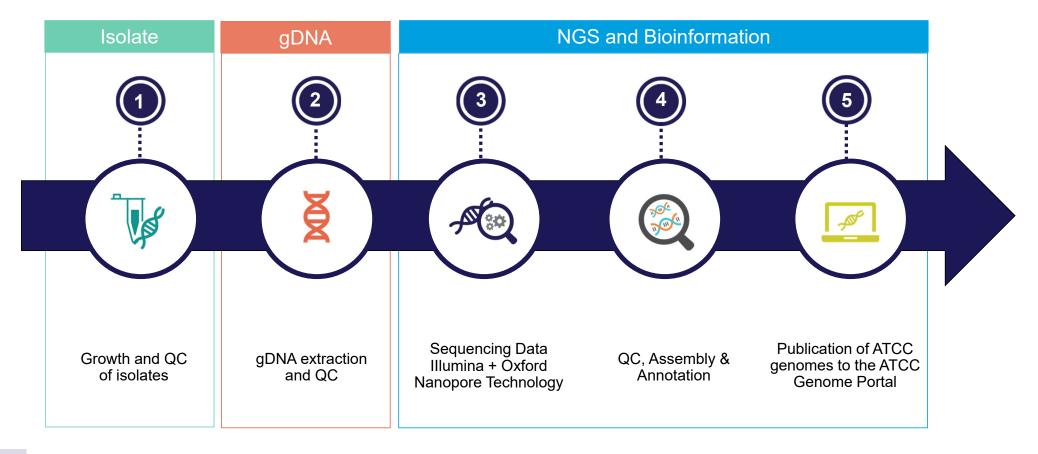
Added 01/26/2021

ATCC Genome Portal

The ATCC Genome Portal is a cloud-based platform that enables users to easily browse genomic data and metadata by simply logging into the portal

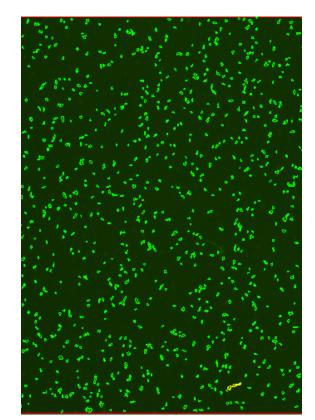
Download whole-genome sequences and annotations of ATCC materials

Search for nucleotide sequences or genes within genomes


.....

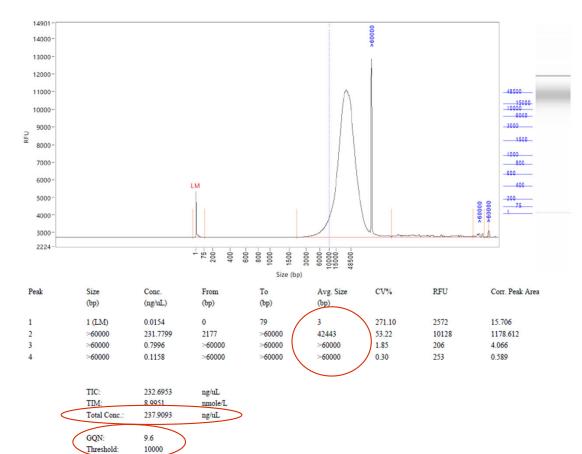
View genome assembly metadata and quality metrics

genomes.atcc.org



Authenticated physical material coupled with reference-quality genome sequences

Extraction of gDNA


- Start with a fresh culture grown according to ATCC's item-specific manufacturing process
- Determine the cell count
 - Typically start with ≥10⁹ cells/mL
- The "best" extraction method depends on the organism
- Simply recovering DNA is not good enough
 - -Concentration
 - Measured by Qubit[™] or Picogreen[®]
 - -Purity
 - o Measured with NanoDrop[™]
 - ∘ $A_{260/280} \ge 1.7$ to ≤ 2.1
 - -Quality and Integrity
 - Fragment size is measured by Fragment Analyzer™

Fusobacterium nucleatum ATCC[®] 25586™ 6.58 x 10⁸ cells /mL

Fragment analysis of gDNA

- Corynebacterium tuberculostearicum (ATCC[®] 35692[™])
- Total concentration: 234 ng/µL
- Average fragment size: ≥42,000bp
- GQN: 9.6 with a threshold of 10,000bp
 - "Genomic Quality Number"
 - 96% of the sample contains fragments larger than 10,000 bp

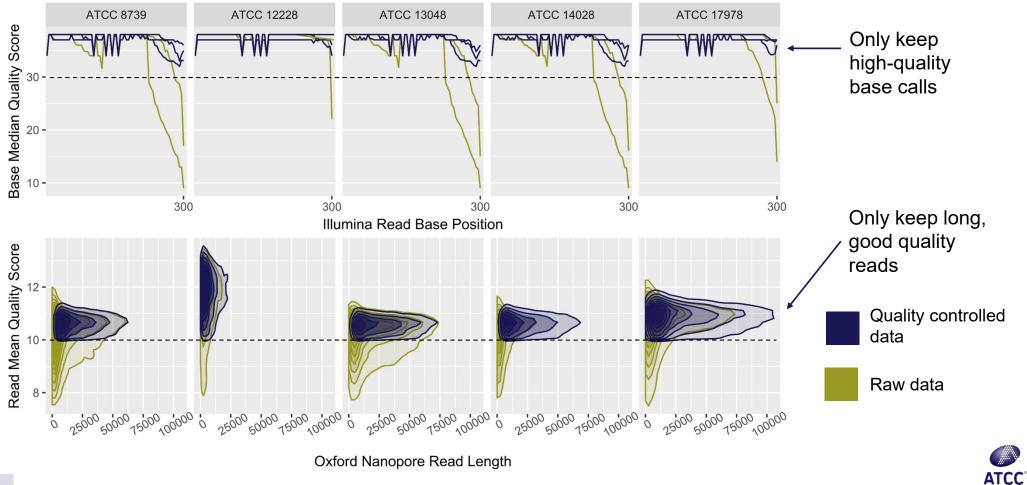
ATCC extraction quality control

ATCC [®] no.	Species	Qubit (ng/µL)	A _{260/} A ₂₈₀	DNA fragment size (range)**
8739™	Escherichia coli	101.9	1.92	49.5 kb (1.5 – >60 kb)
13048™	Klebsiella aerogenes	98.1	1.86	49.5 kb (1.6 – >60 kb)
11828™	Cutibacterium acnes	197.7	1.84	29.8 kb (0.8 – >60 kb)
6538™	Staphylococcus aureus	97.8	1.85	32.9 kb (2.7 – >60 kb)
BAA-2797™	Pseudomonas aeruginosa	153.3	1.99	44.1 kb (1.1 – >60 kb)
824™	Clostridium acetobutylicum	73.8	2.05	12.5 kb (4.6 – 57.8 kb)
6538™	Staphylococcus aureus	37.1	2.00	26.2 kb (6.9 – >60 kb)
27774™	Desulfovibrio desulfuricans	69.2	1.99	58.5 kb (13.3 – >60 kb)
11842™	Lactobacillus delbrueckii	64.8	2.02	41.9 kb (6.1 – >60 kb)
15697™	Bifidobacterium longum	76.2	1.95	51.3 kb (10.5 – >60 kb)

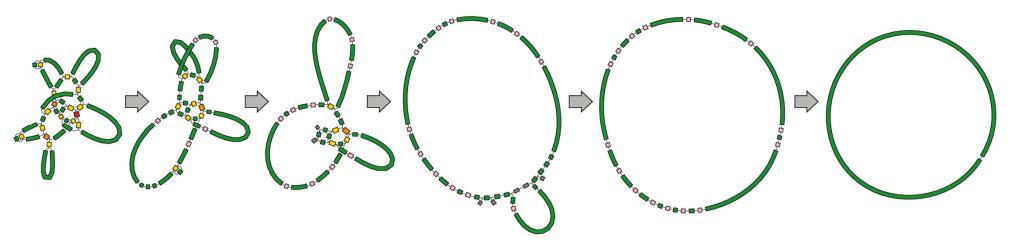
** Main peak reported

Library preps for both Illumina[®] and Oxford Nanopore Technologies[®]

Illumina

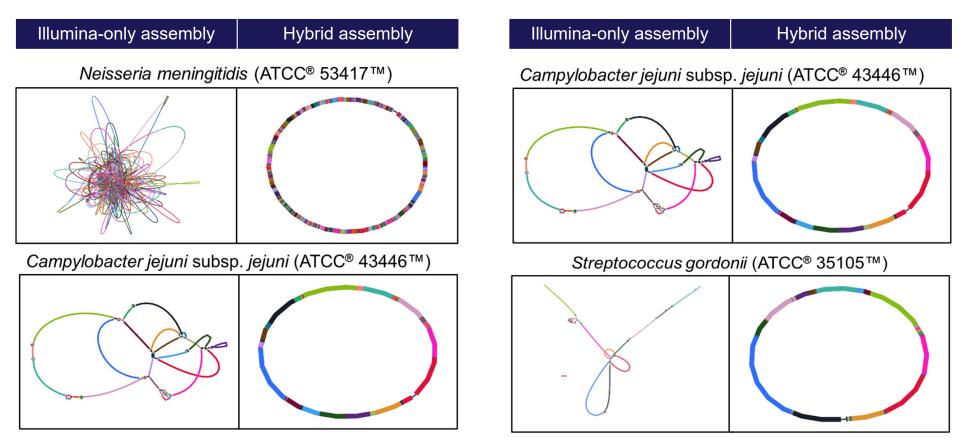

- DNA libraries are prepared using Illumina's DNA Prep kit and unique dual indexes (Cat. # 20018705)
- RNA libraries are prepared using NEBNext Ultra II RNA Library Prep Kit (Cat # E7770S)
- Sequenced on the MiSeq[®] or NextSeq[®] instrument
 - Paired-end read set per sample
 - Multiplexing is based on the estimated genome size
 - Data necessary to generate at least 100X coverage of the genome
- Reads are adapter trimmed using the adapter trimming option on the Illumina instrument

Oxford Nanopore Technologies


- Libraries are prepared using ONT's Ligation Sequencing Kit (SQK-LSK109) with the Native Barcoding Expansion kit (EXP-NBD104 or EXP-NBD114)
- Sequenced on the GridION using the version 9.4.1 flow cell
- The quantity of samples typically multiplexed is based on the estimated genome size of the given organism.
- Flow cells are run for 48-72 hours
- Barcode detection, demultiplexing, and barcode trimming are completed on the instrument, parallel to the run

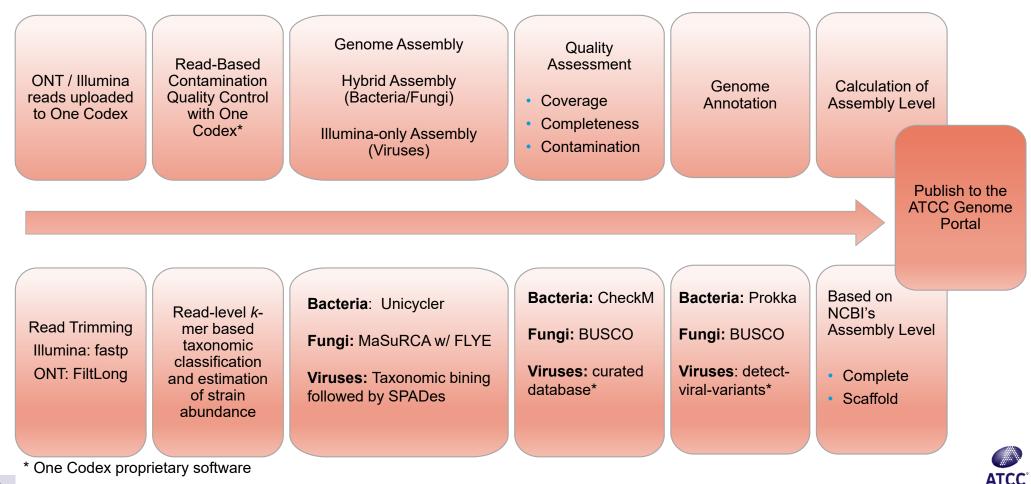
Sequencing QC – Read trimming/filtering

Hybrid genome assembly approach

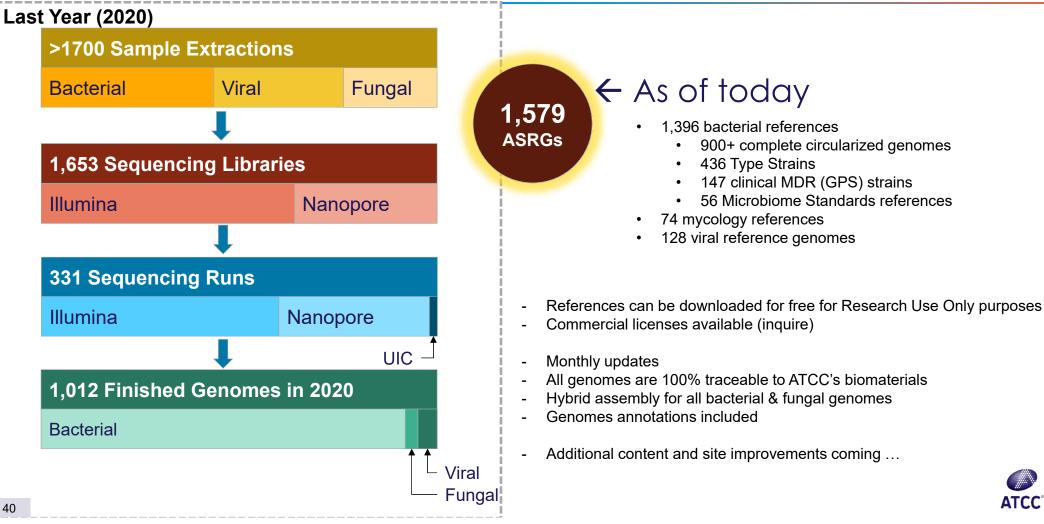


Illumina-only

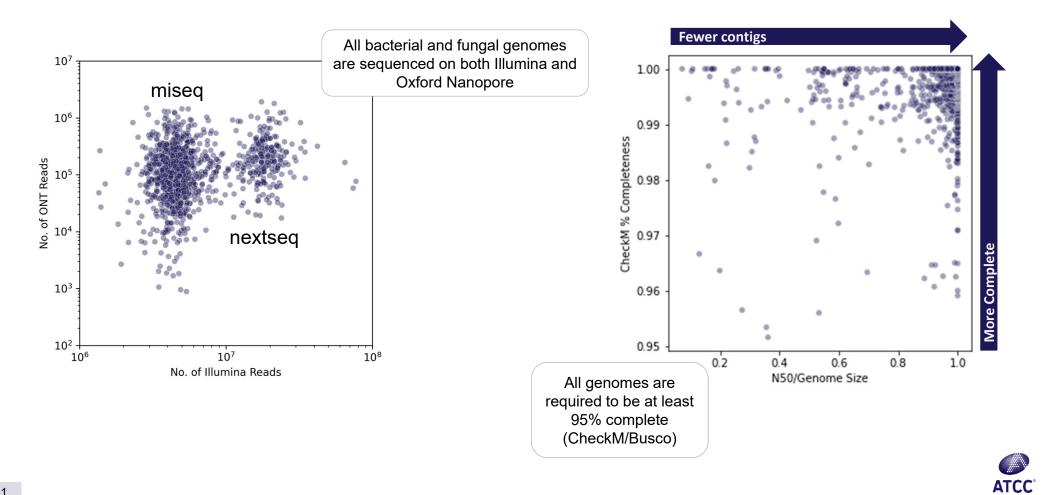
genome	Long reads mapped to a tangled region creates a resolved bridge	Completed
assembly	Successively applying bridges resolves the structure of the genome	hybrid assembly
150 bp reads		



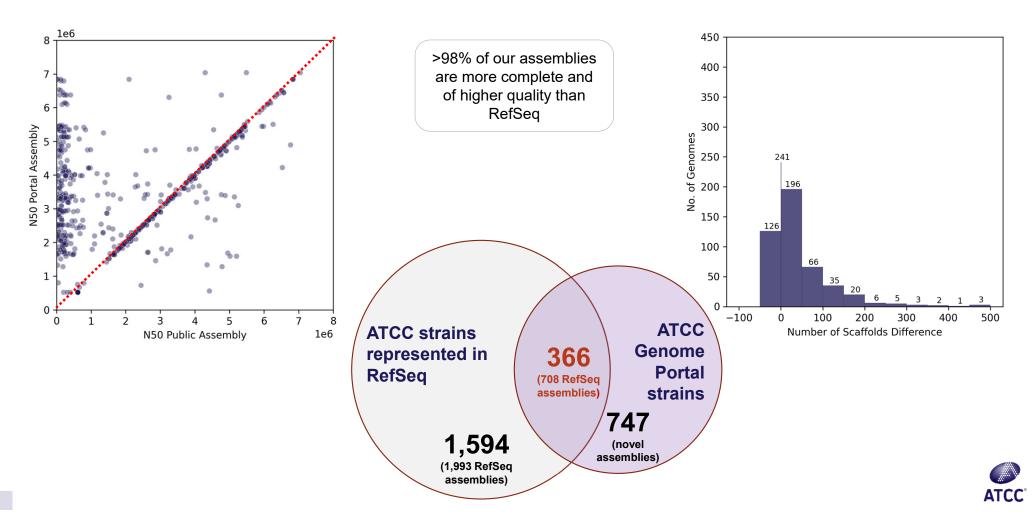
Improved assemblies via hybrid sequencing

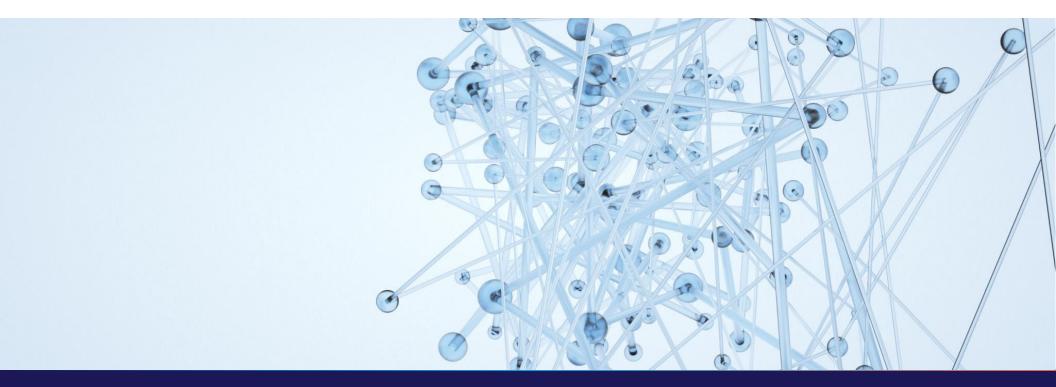


ATCC genome assembly process



39


ATCC Standard Reference Genomes (ASRGs)



Quality of ATCC Genome Portal Assemblies

Comparison of ATCC vs. RefSeq bacterial assemblies

In Summary...

43

Summary & Questions?

Public genomics data should be handled with care

- Usually "OK", but often has errors or omissions
- Examples of data falsification persist in public databases
- Ineffective data curation and control
- ~50% of RefSeq does not have clear provenance to source materials

ATCC Genome Portal

- The only genomic database with 100% data provenance
- Over 98% of our assemblies are superior to RefSeq
- Adding 100+ new genomes per month
- All source materials are available from ATCC
- All methods and procotols are traceable and controlled.

Visit us at <u>https://genomes.atcc.org</u>

ΔΤϹϹ

The ATCC Genome Portal Team S@ATCCgenomics

Jonathan Jacobs, PhD Senior Director, Bioinformatics

BioNexus Principal Investigator

Genomics Lab

Shanice Corlette

Bioinformatics Lab

Briana Benton, PMP Stephen King, MS James Duncan, MS Robert Marlow Samuel Greenfield Corina Tabron Amanda Pierola

John Bagnoli David Yarmosh, MS Nikhita Putheveetil, MS P. Ford Combs, MS

Amy Reese, MS

<u>Partners</u>

Marco Riojas, PhD

... and OneCodex

JOIN OUR TEAM! We're hiring!

© 2022 American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise. These products are for laboratory use only. Not for human or diagnostic use. ATCC products may not be resold, modified for resale, used to provide commercial services, or to manufacture commercial products without prior ACC written approval. Illumina is a registered trademark of Illumina, Inc. Oxford Nanopore is a registered trademark of Oxford Nanopore Technologies Limited.