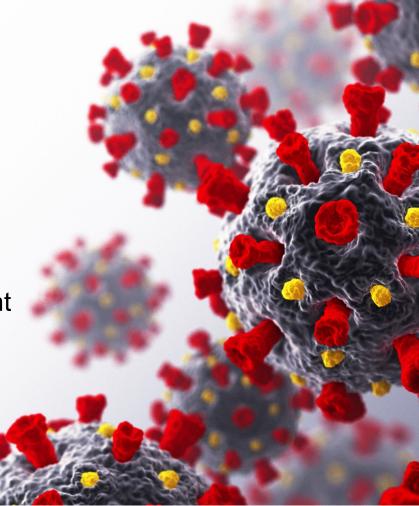
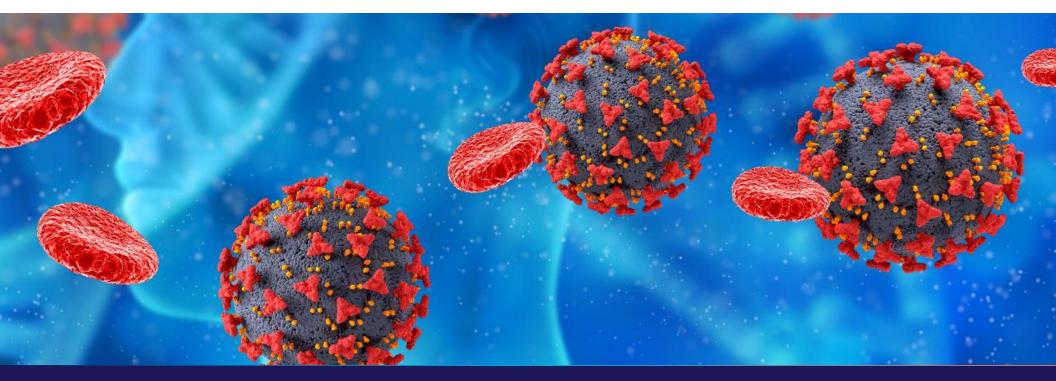

Variations of the SARS-CoV-2 Spike Protein – Challenges and Impact

Partha Mitra, PhD Lead Biologist, ATCC

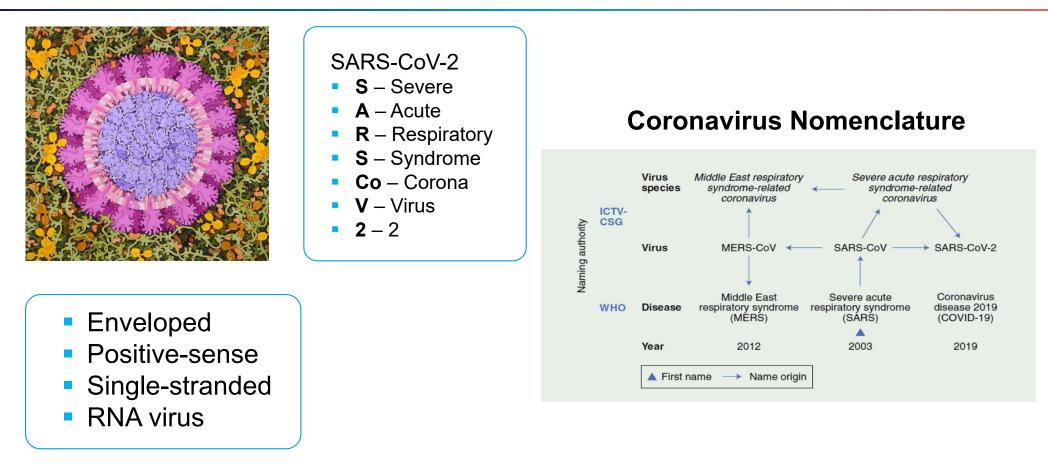
Credible Leads to Incredible™


- World's largest, most diverse biological materials and information resource for microbial culture – the "gold standard"
- Innovative R&D company featuring a novel genome portal, BSL-1 derivatives of infectious organisms, novel technologies for R_x and D_x development


- cGMP biorepository
- Partner with government, industry, and academia
- Leading global supplier of authenticated cell lines, and viral and microbial standards
- Sales and distribution in 150 countries, 19 international distributors
 - Talented team of 500+ employees, over onethird with advanced degrees

Agenda

- Coronavirus infection in humans
- Cellular entry of SARS-CoV-2
- The spike protein conformation
- SARS-CoV-2 variants: effect on conformation
- Conformation and vaccine design
- Impact of the variations on disease management
- Exploring additional avenues



Coronavirus Infection In Human

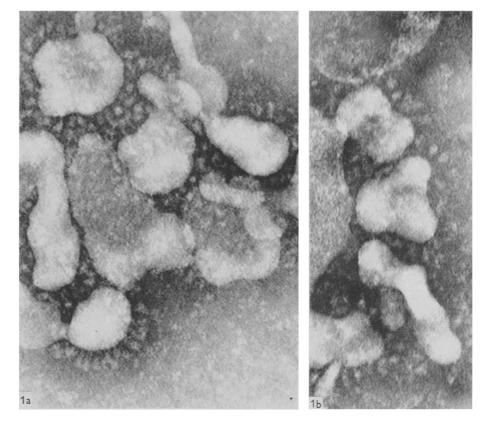
SARS-CoV-2 – the Causative Agent of COVID-19

ATCC°

First Human Coronavirus

The woman who discovered the first coronavirus By Steven Brocklehurst BBC Scotland News https://www.bbc.com/news/uk-scotland-52278716

Dr. June Almeida (1930-2007)


- Identified a particle in nasal washings under an electron microscope
- Described it as like influenza viruses but not the same
- It became known as the first human coronavirus image

First Coronavirus Electron Microscopy Picture

J. Gen. Virol. (1967), 1, 175-178 With 2 plates Printed in Great Britain

The Morphology of Three Previously Uncharacterized Human Respiratory Viruses that Grow in Organ Culture By JUNE D. ALMEIDA Department of Medical Microbiology, St Thomas's Hospital Medical School, London, S.E. 1 AND D. A. J. TYRRELL Common Cold Research Unit, Medical Research Council, Salisbury, England (Accepted 28 November 1966)

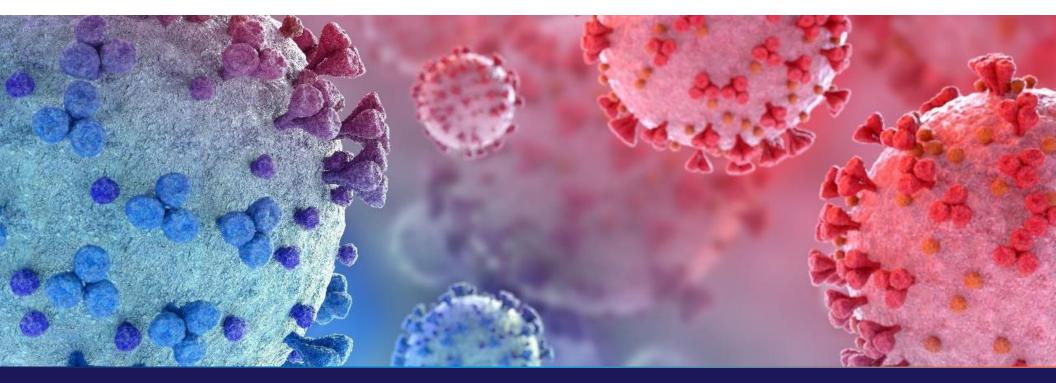
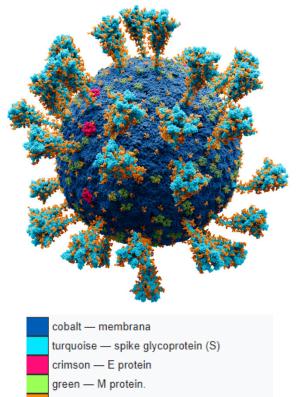

ATCC°

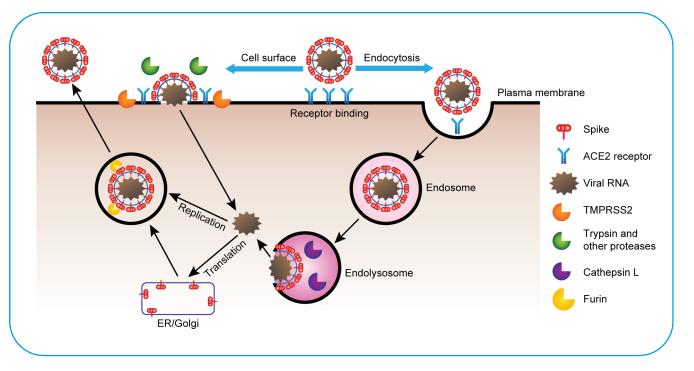
Fig. 1 a, b. This type of particle was seen when organ cultures infected with strain 229E were examined by the present technique. The particles are pleomorphic, in the size range 800 to 1200 A, and are surrounded by a distinct 200 A long fringe. They are indistinguishable from the particles of avian infectious bronchitis, the only virus previously known to have this morphology.

Coronaviruses that Infect Humans

- Human coronavirus 229E or HCoV-299E (α-coronavirus) 1963
- Human coronavirus OC43 or HCoV-OC43 (β-coronavirus) 1963
- SARS-CoV (β-coronavirus) 2003
- Human coronavirus-NL63 or HCoV-NL63 (α-coronavirus) 2004
- Human coronavirus HKU1 or HCoV-HKU1 (lineage A β-coronavirus) 2004
- Middle East respiratory syndrome coronavirus or MERS-CoV (β-coronavirus) – 2012
- SARS-CoV-2 (β-coronavirus) 2019

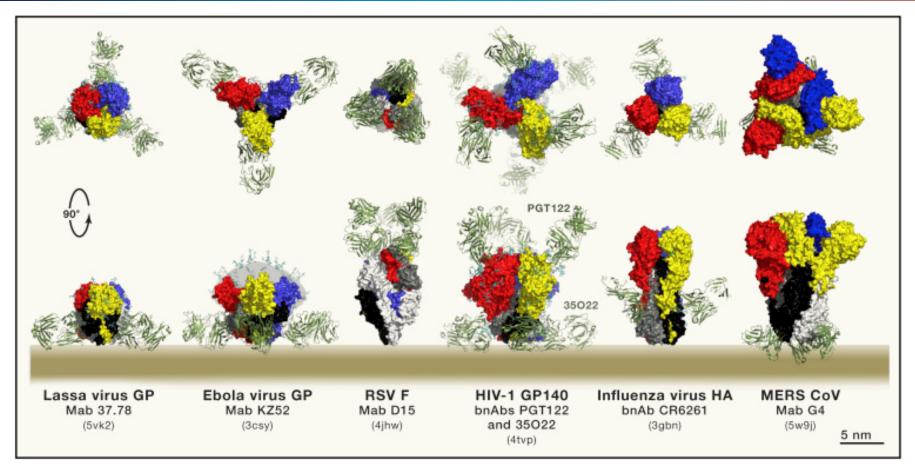


Cellular Entry of SARS-CoV-2

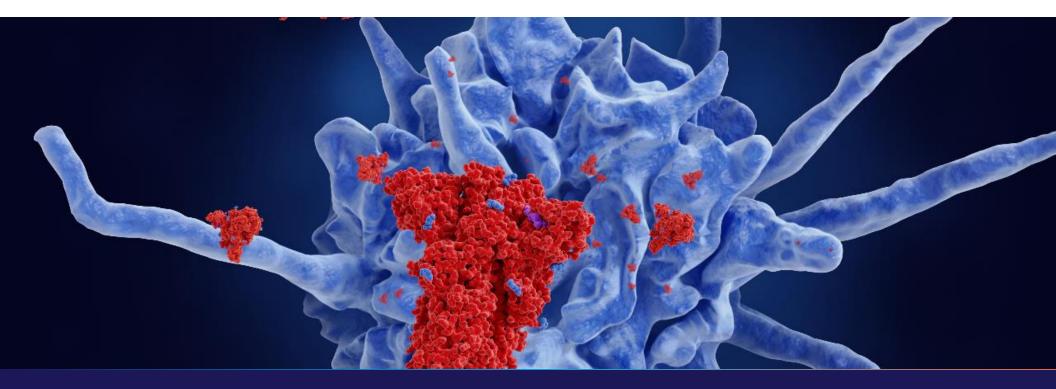


Cellular Entry of SARS-CoV-2

orange — glucose


SARS-CoV-2 entry mechanisms

https://en.wikipedia.org/wiki/File:Novel Coronavirus SARS-CoV-2.jpg; SARS-CoV-2 tropism, entry, replication, and propagation: Considerations for drug discovery and development Murgolo N, Therien AG, Howell B, Klein D, Koeplinger K, et al. (2021) PLOS Pathogens 17(2) e1009225. https://doi.org/10.1371/journal.ppat.1009225



Cellular Entry of Enveloped Viruses

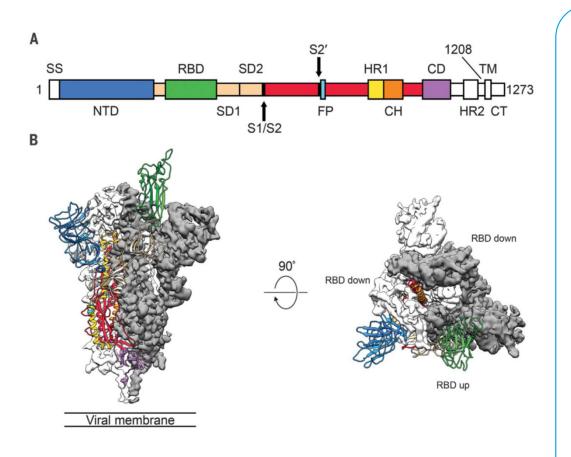
Rey FA, Lok SM. Common Features of Enveloped Viruses and Implications for Immunogen Design for Next-Generation Vaccines. Cell. 2018 Mar 8;172(6):1319-1334. doi: 10.1016/j.cell.2018.02.054. PMID: 29522750; PMCID: PMC7112304

The Spike Protein Conformation

SARS-CoV-2 Spike(S) protein

- 1273 Amino Acid
- 180–200 kDa
- Glycosylated (22 sites/protomer)
- Homo-trimeric
- Transmembrane
- Class I fusion protein

The SARS-CoV-2 Spike(S) Protein Determines:

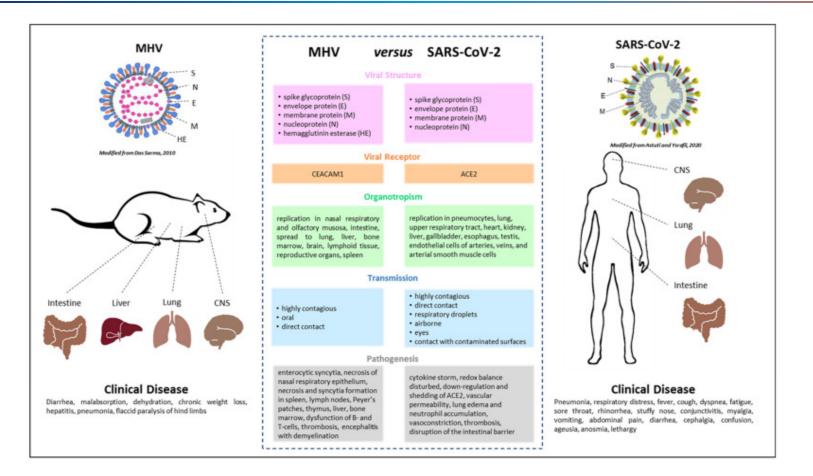

- Receptor binding and specificity
- Membrane fusion
- Virus neutralization by antibody

A Key Target for:

- Vaccine development
- Therapeutic antibody
- Diagnostic use

Structure of 2019-nCoV S

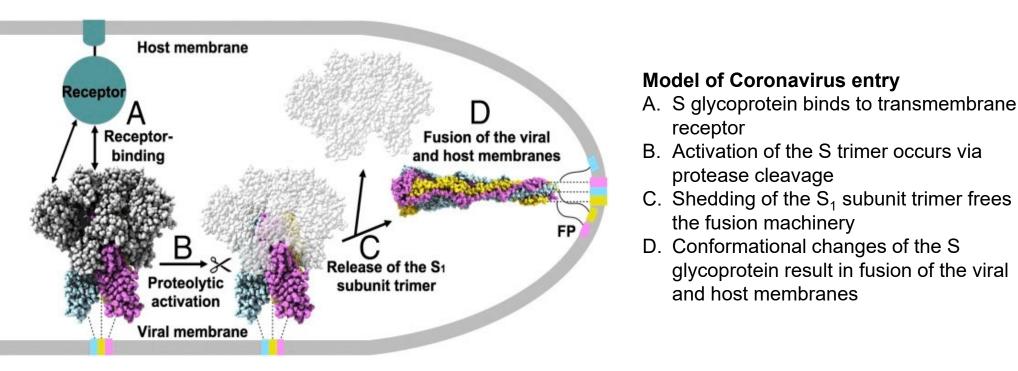
(A) Schematic of 2019-nCoV S primary structure colored by domain


SS, signal sequence S2', S2' protease cleavage site FP, fusion peptide HR1, heptad repeat 1 CH, central helix CD, connector domain HR2, heptad repeat 2 TM, transmembrane domain CT, cytoplasmic tail Arrows denote protease cleavage sites

(B) Side and top views - single RBD in the up conformation

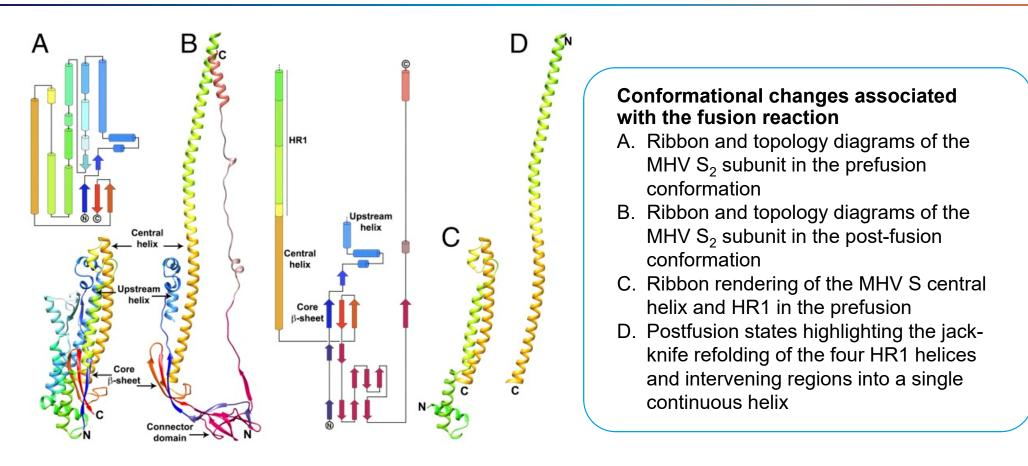
The two RBD down protomers are shown as cryo-EM density in either white or gray colored corresponding to the schematic in (A). The sequences excluded from the ectodomain expression construct or could not be visualized in the final map are colored white

ATCC°


MHV-a model of Coronavirus Study

Körner RW, Majjouti M, Alcazar MAA, Mahabir E. Of Mice and Men: The Coronavirus MHV and Mouse Models as a Translational Approach to Understand SARS-CoV-2. Viruses. 2020 Aug 12;12(8):880. doi: 10.3390/v12080880. PMID: 32806708; PMCID: PMC7471983.

ATCC°


Cellular Entry of Coronavirus

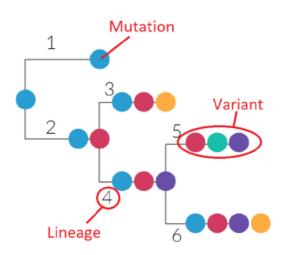
Walls AC, Tortorici MA, Snijder J, Xiong X, Bosch BJ, Rey FA, Veesler D. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11157-11162. doi: 10.1073/pnas.1708727114. Epub 2017 Oct 3

Conformational Change in Spike Protein Structure

Comparison of Sequences Between Human Coronaviruses

F. K. Yoshimoto

Table 3 Summary of sequenceidentities and similaritiesbetween SARS CoV-2(GenBank ID: BCA87361.1)and other human coronaviruses[50]. AA overlap: amino acidoverlap	Entry	Name	GenBank ID	Sequence iden- tity (%)	Sequence similar- ity (%)	AA overlap
	1	SARS CoV-1	AAP13441.1	76.0	91.5	1277
	2	НСоV 229-E	QOP39313.1	31.3	61.6	777
	3	MERS CoV	ASU91305.1	34.8	65.6	1049
	4	HCoV OC43	AAA03055.1	30.2	57.9	1344
	5	HCoV HKU1	ADN03339.1	29.2	59.0	1358
	6	HCoV NL63	AGT51394.1	29.8	60.0	861



Yoshimoto, F.K. A Biochemical Perspective of the Nonstructural Proteins (NSPs) and the Spike Protein of SARS CoV-2. Protein J 40, 260–295 (2021). https://doi.org/10.1007/s10930-021-09967-8

Terminology Related to Variation

Phylogenetic tree:

a "family tree" showing how mutations are related to each other

Mutation: an error introduced during viral replication Substitution: one nucleotide is replaced with another synonymous results in no change in amino acid non-synonymous results in changes in amino acid Deletion: one or more nucleotides are left out frame-shifting /no frame shift/ termination Insertion: one or more extra nucleotides are added frame-shifting /no frame shift/ termination

Variant: A genome that contains a particular set of mutations

Lineage: All the descendants of a branch of a phylogenetic tree viz. PANGO lineages (<u>Phylogenetic Assignment of Named</u> <u>Global Outbreak</u>)

Convergent evolution: Selective evolutionary pressure

- Randomly, two variants of a virus pop up with the same mutation without the cases being connected
- This suggests selective pressure the virus has mutated to improve biological fitness

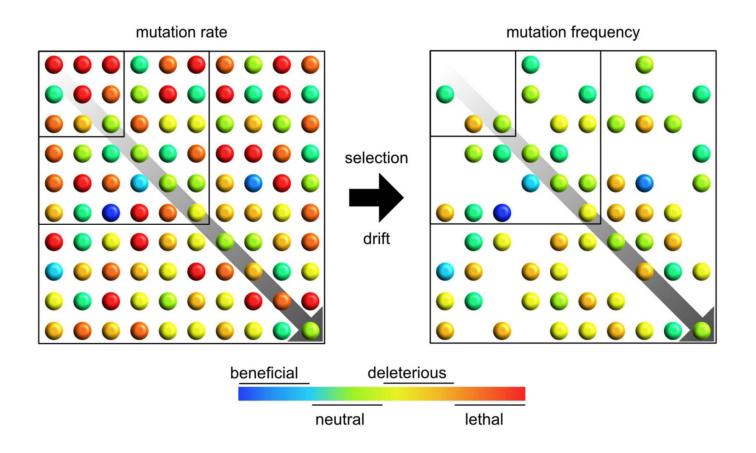
Variation/mutation with Public Health Significance (Source: WHO)

Variant of Concern (VOC): A variant that has been associated with at least one of the following:

- Increase in transmissibility or detrimental change in COVID-19 epidemiology
- Increase in virulence or change in clinical disease presentation
- Decrease in effectiveness of public health and social measures or available diagnostics, vaccines, or therapeutics

Variant of Interest (VOI) A SARS-CoV-2 variant

- with genetic changes that are predicted or known to affect virus characteristics such as transmissibility, disease severity, immune escape, diagnostic or therapeutic escape; AND
- Identified to cause significant community transmission or multiple COVID-19 clusters, in multiple countries with increasing relative prevalence alongside increasing number of cases over time, or other apparent epidemiological impacts to suggest an emerging risk to global public health


Currently designated Variants of Concern

WHO label	Pango lineages	GISAID clade	Nextstrain clade	Additional amino acid changes monitored*	Earliest documented samples	Date of designation
Alpha	B.1.1.7	GRY	20I (V1)	+S:484K +S:452R	United Kingdom Sep-2020	18-Dec-2020
Beta	B.1.351 B.1.351.2 B.1.351.3	GH/501Y.V2	20H (V2)	+S:L18F	South Africa May-2020	18-Dec-2020
Gamma	P.1 P.1.1 P.1.2	GR/501Y.V3	20J (V3)	+S:681H	Brazil Nov-2020	11-Jan-2021
Delta	B.1.617.2 AY.1 AY.2 AY.3	G/478K.V1	21A	+S:417N	India Oct-2020	VOI: 4-Apr-2021 VOC: 11-May-2021

ATCC[®]

<u>Tracking SARS-CoV-2 variants (who.int)</u> https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/

Mutations Instill Variation

ATCC

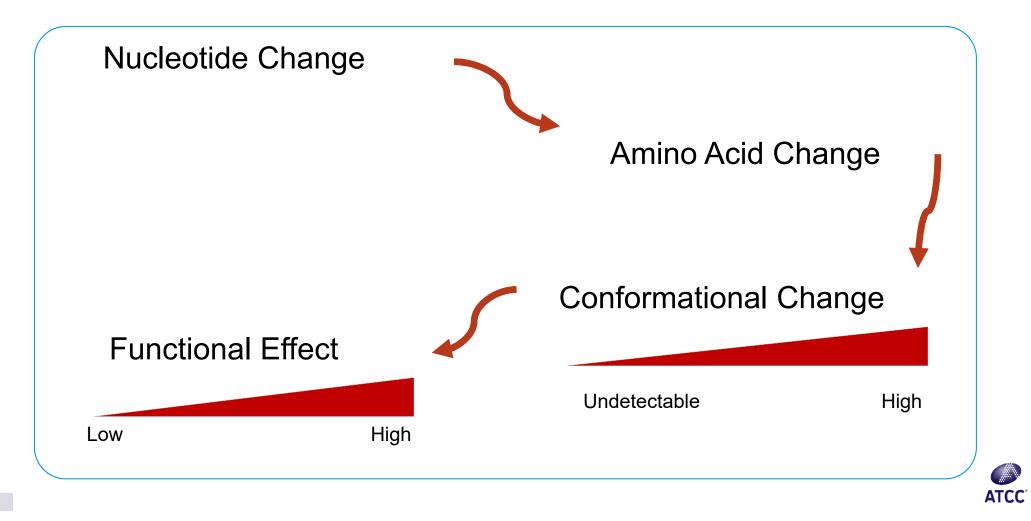
Smith EC (2017) The not-so-infinite malleability of RNA viruses: Viral and cellular determinants of RNA virus mutation rates PLoS Pathog 13(4): e1006254

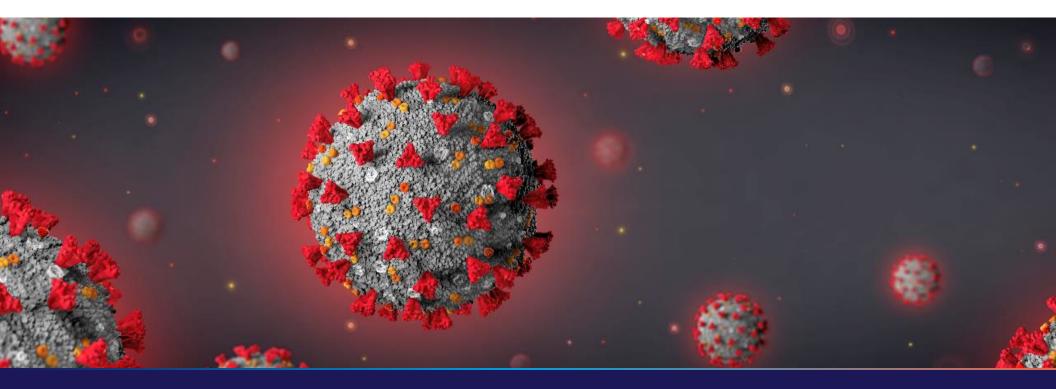
Mutation Rate Modulators

- Polymerase fidelity
- Sequence context
- Template secondary structure
- Cellular microenvironment
- Replication mechanisms
- Proofreading mechanism

Effects of Mutations on the Protein Level

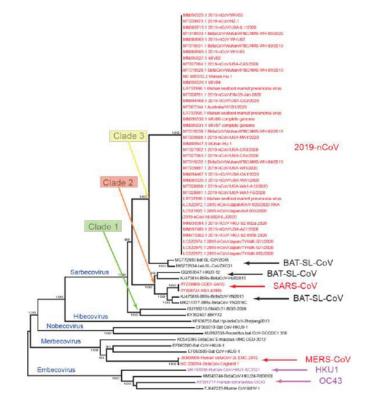
- Amino acid substitutions
- Amino acid deletions and insertions
- Chain termination and truncation
- Changes in glycosylation
- Effects on allosteric structure
- Modified immunogenic property
- Altered receptor/ligand interaction
- Effect on protein function

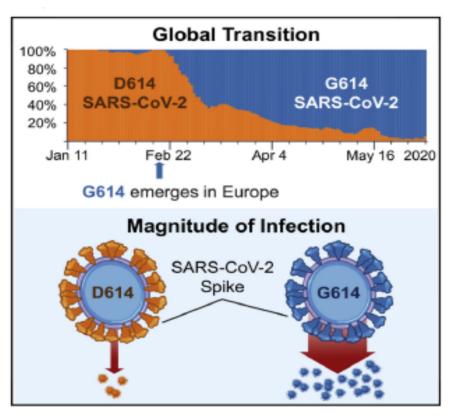



The Evolution of SARS-CoV-2

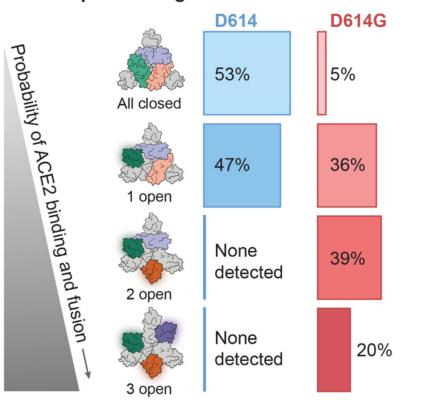
- Approximately two mutations per month in the global population (from December 2019 to October 2020)
- Genomic analyses indicate a change in host environment and signatures of increased selective pressures
- The emergence of variants with higher numbers of mutations relative to previous circulating variants
- The increased transmissibility

The Manifestation of Variation in SARS-CoV-2 Spike Protein



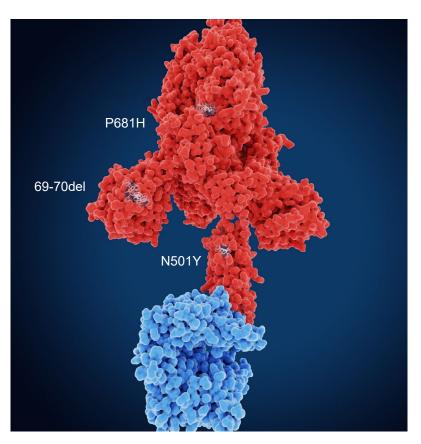

SARS-CoV-2 Variants: Effect on Conformation

Genetic Evolution of SARS-CoV-2


Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19) 16-24 February 2020

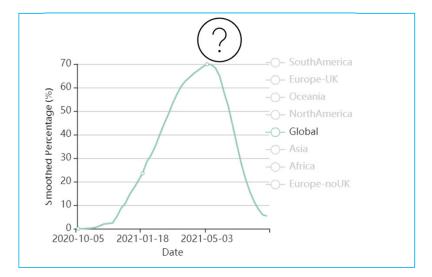
Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Korber B et al Cell. 2020 Aug 20;182(4):812-827

RBD conformation of the D614G Spike Protein Variant



Receptor binding domain conformation

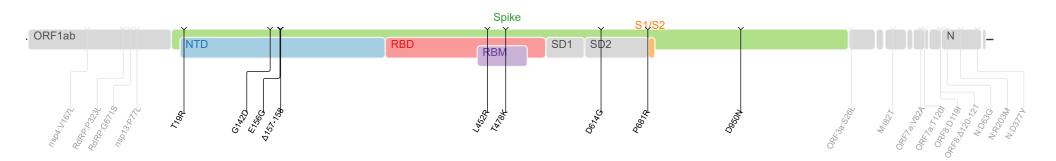
- The SARS-CoV-2 D614G S protein variant supplanted the ancestral virus in people
- D614G increases infectivity on human lung cells or cells with bat or pangolin ACE2
- D614G is potently neutralized by antibodies targeting the receptorbinding domain
- D614G shifts S protein conformation toward an ACE2- binding fusioncompetent state


Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant Yurkovetskiy et al., 2020, Cell 183, 739–751 October 29, 2020

SARS-CoV-2 variant B.1.1.7 (UK variant)

The spike protein (red) and angiotensin converting enzyme 2 (ACE2; blue)

Identified in December 2020



Total #Alpha 202012/01 GRY (B.1.1.7)

https://www.gisaid.org/hcov19-variants/

SARS-CoV-2 variant B.1.617.2

Spike Protein Substitutions:

T19R, (V70F*), T95I, G142D, E156-, F157-, R158G, (A222V*), (W258L*), (K417N*), **L452R, T478K,** D614G, P681R, D950N

Attributes:

- Increased transmissibility
- Potential reduction in neutralization by some EUA monoclonal antibody treatments
- Potential reduction in neutralization by postvaccination sera

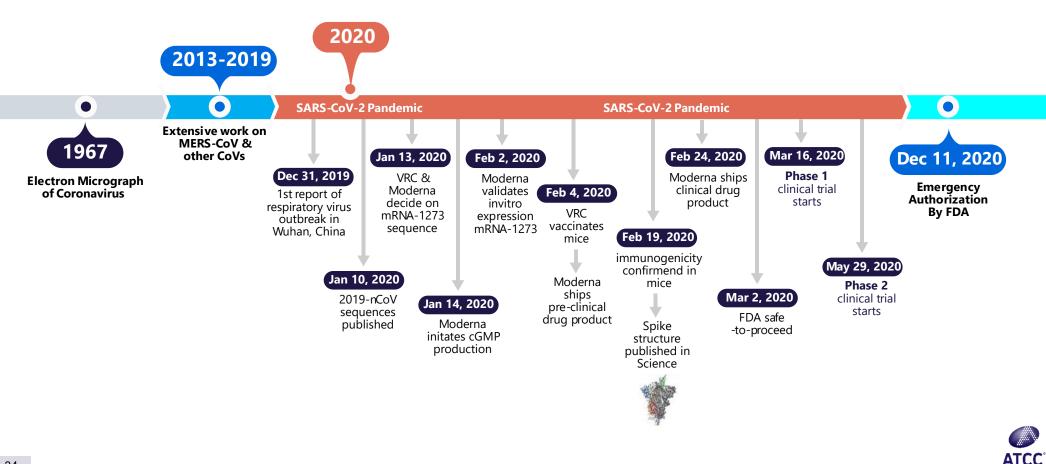
https://covdb.stanford.edu/page/mutation-viewer/#sec_b-1-617-2,

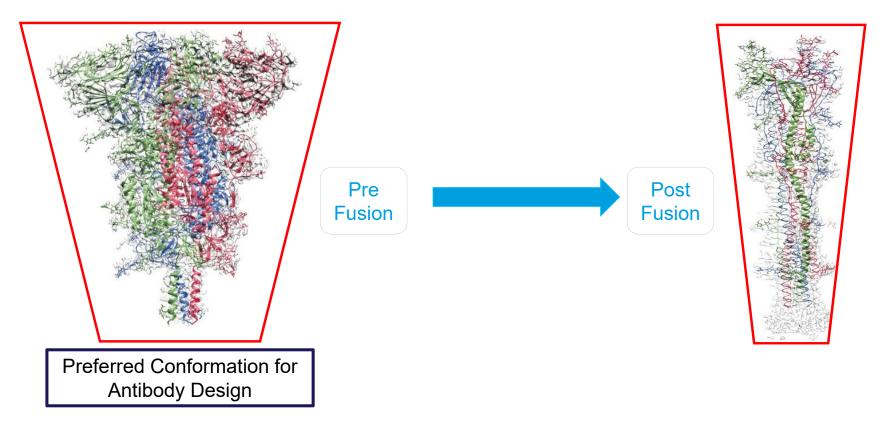
Identified in India Oct. 2020 VOI: 4-Apr-2021 VOC: 11-May-2021

Delta G/478K.V1 (B.1.617.2+AY.1+AY. 2+AY.3+AY.3.1)

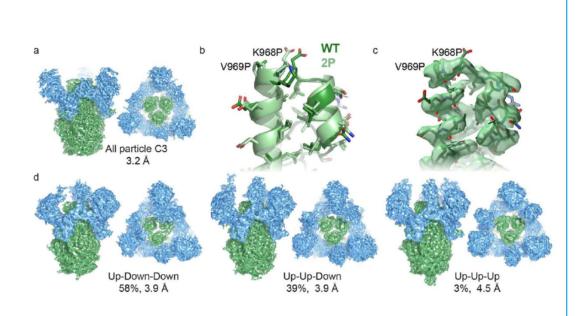
GISAID - hCov19 Variants https://www.gisaid.org/hcov19-variants/

Mutation Prevalence Across Lineages


outbreak.inhttps://outbreak.info/compare-lineages?pango=AY.1&pango=AY.2&pango=AY.3&pango=AY.3.1&pango=B.1.1.7&pango=B.1.1.7%20%2B%20S%3AE484K&pango=B.1.351&pango=B.1.351.2&pango=B.1.2&pango=B.1.2&pango=B.1.2&pango=B.1.2&pango=B.1.2&pango=B.1.2&pango=B.1.


SARS-CoV-2 Vaccine Design

COVID-19 Pandemic and Vaccine Development


Conformational Variation of Spike Protein

Adopted from The tiny tweak behind COVID-19 vaccines (acs.org) https://cen.acs.org/pharmaceuticals/vaccines/tiny-tweak-behind-COVID-19/98/i38

2P Mutation-Stabilized Conformation

Structure of the SARS-CoV S 2P ectodomain.

- A. The C3 symmetrized reconstruction
- B. Coordinate models derived from cryo-EM reconstructions of the wild-type SARS-CoV S ectodomain (5X58.pdb, dark green) and the prefusion stabilized SARS-CoV S 2P ectodomain (6CRV.pdb light green) adopt identical conformations near the 2P mutation site
- C. There is highly featured density in the region containing the 2P mutation site
- D. Classification of heterogeneity within the S1 RBD
- S1 regions are shown in blue and S2 regions are shown in green

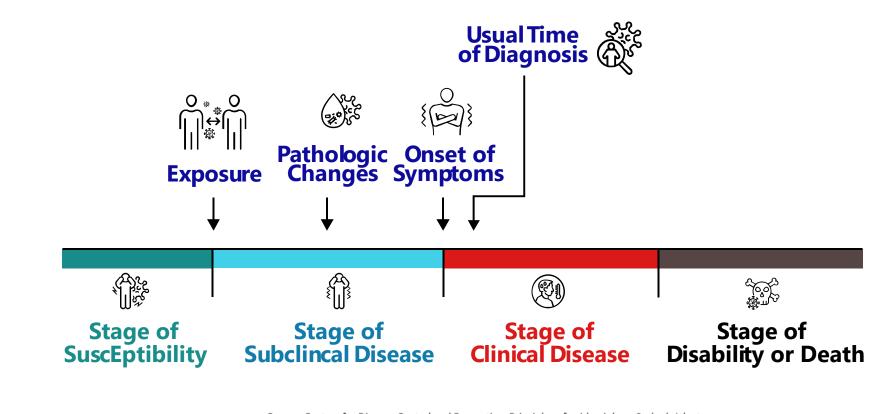
Adopted from Kirchdoerfer, R.N., Wang, N., Pallesen, J. et al. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Sci Rep 8, 15701 (2018). https://doi.org/10.1038/s41598-018-34171-7

SARS-CoV-2 Messenger RNA (mRNA) Vaccines

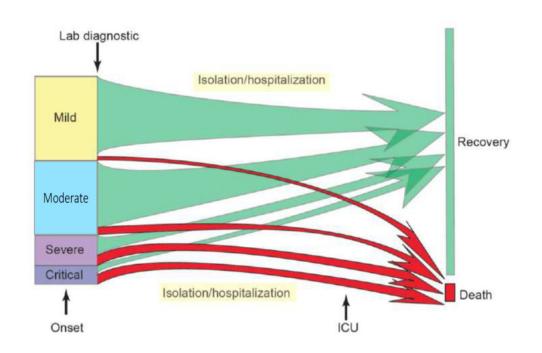
https://pdb101.rcsb.org/sci-art/goodsell-gallery/sars-cov-2-mrna-vaccine

Messenger RNA (mRNA) vaccine particle

- RNA encoding the SARS-CoV-2 spike protein (magenta)
- Lipid bilayer of cholesterol and ionizable lipids
- Polyethylene glycol chains having both extended and folded conformations (green)



Impact of the Variations on Disease Management


Natural History of Disease Timeline

Adopted from Source: Centers for Disease Control and Prevention. Principles of epidemiology, 2nd ed. Atlanta: U.S. Department of Health and Human Services;1992.

Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19) 16-24 February 2020

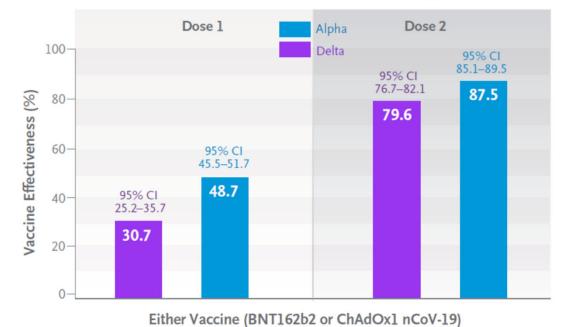
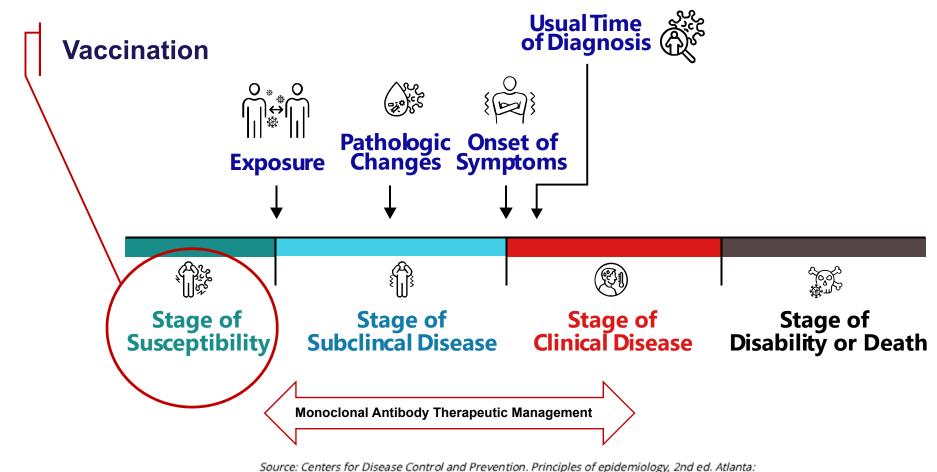


Figure 5. Pattern of disease progression for COVID-19 in China

Note: the relative size of the boxes for disease severity and outcome reflect the proportion of cases reported as of 20 February 2020. The size of the arrows indicates the proportion of cases who recovered or died. Disease definitions are described above. Moderate cases have a mild form of pneumonia.

Vaccine Effectiveness on Alpha and Delta Variants

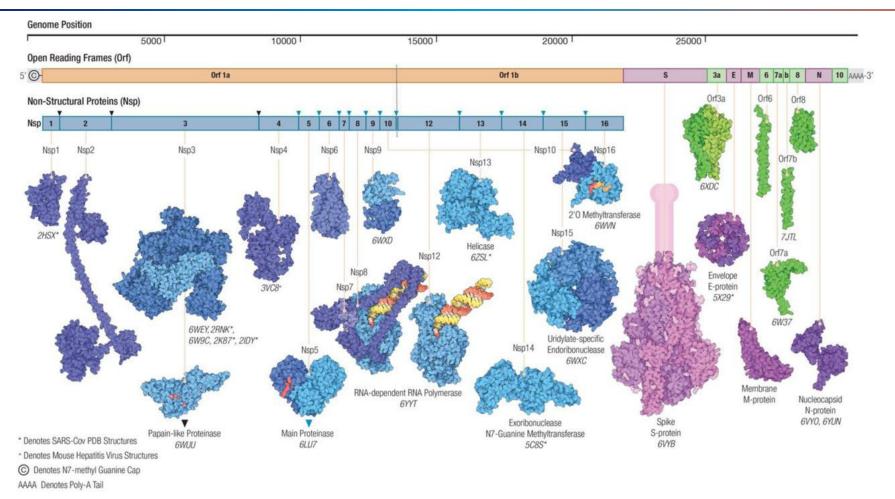


Vaccine Effectiveness against the Delta and Alpha Variants

https://www.nejm.org/doi/full/10.1056/NEJMoa2108891

Natural History of Disease Timeline – Intervention

Source: Centers for Disease Control and Prevention. Principles of epidemiology, 2nd ed. A U.S. Department of Health and Human Services;1992. (Adopted)


ATCC°

Exploring Additional Avenues

Disease Pathology and Viral Factors

https://www.biorxiv.org/content/10.1101/2020.12.01.406637v1.full.pdf+html

ATCC°

Prioritizing Diseases for Research and Development in Emergency Contexts

A WHO tool distinguishes which diseases pose the greatest public health risk due to their epidemic potential and/or whether there is no or insufficient countermeasures

At present, the priority diseases are:

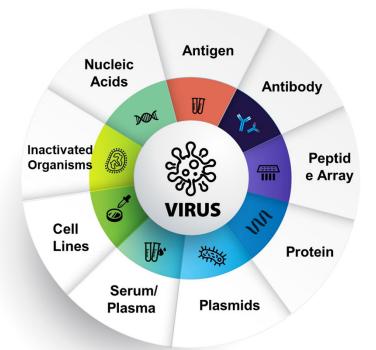
- COVID-19
- Crimean-Congo haemorrhagic fever
- Ebola virus disease and Marburg virus disease
- Lassa fever
- Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome (SARS)
- Nipah and henipaviral diseases
- Rift Valley fever
- Zika
- "Disease X"*

This is not an exhaustive list, nor does it indicate the most likely causes of the next epidemic. WHO reviews and updates this list as needs arise, and methodologies change. Based on the priority diseases, WHO then works to develop R&D roadmaps for each one.

* Disease X represents the knowledge that a serious international epidemic could be caused by a pathogen currently unknown to cause human disease. The R&D Blueprint explicitly seeks to enable early cross-cutting R&D preparedness that is also relevant for an unknown "Disease X".

ΔΤϹϹʹ

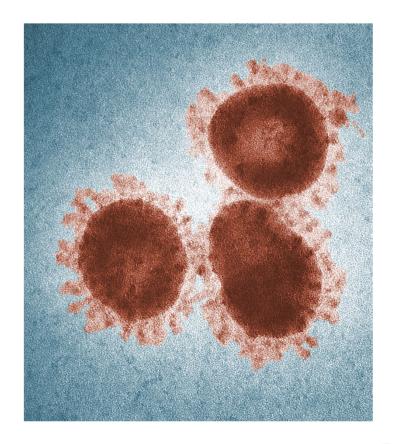
https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts


A Few Areas of Interest

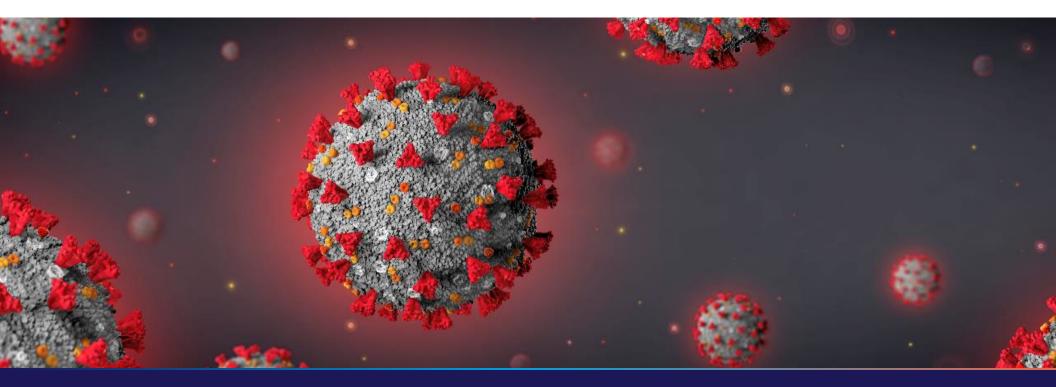
- Repurposing of established medication
- Studies on comparative pathogenesis
- Pathway specific therapeutics
- dsRNA induced innate immune responses
- Peptide blocker for fusion protein
- Detectability enhancement diagnostics

ATCC Coronavirus Reagents

ATCC [®] No.	Product Description
VR-1986HK™	Heat-inactivated SARS-CoV-2, WA1/2020
VR-1986D™	Genomic SARS-CoV-2 RNA, WA1/2020
VR-3276SD™	Quantitative Synthetic SARS-CoV-2: ORF, E, N
VR-1991D™	Genomic SARS-CoV-2 RNA, Hong Kong
VR-3277SD™	Quantitative Synthetic SARS-CoV-2 RNA: Spike 5'
VR-3278SD™	Quantitative Synthetic SARS-CoV-2 RNA: Spike 3'
VR-1992D™	Genomic SARS-CoV-2 RNA, Italy
VR-1994D™	Genomic SARS-CoV-2 RNA, Germany
VR-3279SD™	Quantitative Synthetic SARS-CoV-2: nsp9, nsp12 (RdRp)
VR-1997™	Anti-SARS-CoV-2 Spike Rabbit Polyclonal Antibody
VR-3326D™	Genomic SARS-CoV-2 RNA, B.1.1.7
VR-3326HK™	Heat-inactivated SARS-CoV-2, B.1.1.7
VR-3327D™	Genomic SARS-CoV-2 RNA, B.1.351
VR-3327HK™	Heat-inactivated SARS-CoV-2, B.1.351
VR-3280SD™	Quantitative Synthetic SARS-CoV [2003] RNA
VR-740™	Human coronavirus Strain: 229E
VR-740D™	Genomic RNA from HCoV 229E
VR-740DQ™	Quantitative Genomic RNA from HCov 229E
VR-1558™	Human coronavirus Strain: OC43
VR-1558D™	Genomic RNA from HCoV OC43
VR-1558DQ™	Quantitative Genomic RNA from HCov OC43
VR-3262SD™	Quantitative Synthetic HCoV Strain: HKU1 RNA
VR-3263SD™	Quantitative Synthetic HCoV Strain: NL63 RNA
VR-3248SD™	Quantitative Synthetic MERS RNA



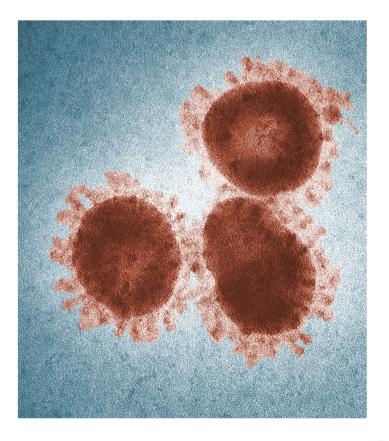
www.atcc.org/coronavirus



Summary

- Human tropism of coronaviruses
- Viral infection mechanism and membrane interaction
- Relationship of mutation and variation
- SARS-CoV-2 variations and effect on conformation
- Cumulative effect on variations and functional variants
- Spatial projection and vaccine design
- Escape variants and disease development
- Impact of variation on disease management
- Future of pandemic management
- Newer and/or revised information is generating and advancing the field every day

Thank you!



More ATCC Resources

For more coronavirus resources: www.atcc.org/coronavirus

Upcoming webinar: Cell Culture Fundamentals

- Presented by Steve Budd, MS, MBA
- October 14, 2021, at 12:00 PM ET

© 2021 American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise.

