

Michael Maddox, BS Biologist, ATCC

Credible Leads to Incredible™

- World's largest, most diverse biological materials and information resource for cell culture – the "gold standard"
- Innovative R&D company featuring gene editing, differentiated stem cells, advanced models
- cGMP biorepository

- Partner with government, industry, and academia
- Leading global supplier of authenticated cell lines, viral and microbial standards
- Sales and distribution in 150 countries, 19 international distributors
- Talented team of 550+ employees, over onethird with advanced degrees

Agenda

- Skin pigmentation background
- Applications for melanocyte cell models
- Comparison of various cell models (primary and immortal)
- Immortalized cell models key characteristics
- hTERT-immortalized Adult Melanocyte cell culture model - data
- hTERT-immortalized Neonatal Melanocyte cell culture model - data

Skin Pigmentation Background – Step 1

First main step – complex cellular and biochemical process to produce and package melanosomes

Melanosome biogenesis – 4 distinct phases:

- I. Non-pigmented, pre-melanosome vacuole
- II. Acquire striations
- III. Striations receive pigment deposits
- IV. Transported to membrane for exocytosis

Journal of Cell Science 2008 121: 3995-3999

Skin Pigmentation Background – Step 2

Second main step: stored in neighboring keratinocytes – protects underlying tissue

Melanosomes are exocytosed (by melanocytes) then endocytosed by adjacent keratinocytes

Postepy Dermatol Alergol. 2013 Feb; 30(1): 30-41.

Applications of Melanocyte Cell Models – Toxicology

- 1. Reliable reagent for traditional toxicology (LD₅₀)
- 2. Advanced Toxicology: Understand the complex interplay of genetic background and environmental agents that can stress melanocytes
- 3. Toxicology and chemotherapeutic agents: Melanoma, a common cancer in the western world with an increasing incidence* begins in melanocytes
- 4. Develop treatments: Skin conditions such as hypopigmentation, hyperpigmentation, or combined disorders with hypo-/hyperpigmentation

Accurate models needed to study the complex system

*Nature Reviews Disease Primers volume 1, Article number: 15003 (2015)

Applications of Melanocyte Cell Models – Studying Biochemical Processes

Melanocytes provide a model to study cell metabolic processes

- In-depth studies of melanin biosynthesis and metabolism (Cosmetics)
- 2. Melanin pigments are relatively simple to detect and measure making melanogenesis an ideal model system for general studies of cell metabolism

ATCC[°]

Immortalized Cells – Advanced In Vitro Model

Characteristics of Two Physiologically Relevant Cell Models

	Primary cell Melanocytes	hTERT-immortalized primary melanocytes
Mimic <i>in vivo</i> characteristics	++++	+++
Proliferative capacity	+	+++
Experimental reproducibility	+	+++
Predictability in toxicological studies	+++	+++
Genomic stability	Diploid	Diploid/near diploid
Supply	+	+++
Cost	+	++
Ease of use	+	++

Primary: Ideal when donor diversity is needed Immortalized: Ideal for screening or when a consistent source is needed

ATCC[°]

hTERT-immortalized Cells – Key Characteristics

Melanocytes

- Growth:
 - Cells retain replicative capacity ("immortalized")
- Morphology and marker expression:
 - Similar to primary cells
 - Do epithelial cells still express epithelial markers?
 - Are they still negative for fibroblast markers?
- Toxicology responses:
 - Within expected range, similar to primary cells

Population Doubling of Primary and hTERT Gingival Fibroblast

Metabolic reduction by 3D organotypic skin culture in Triton-X

ATCC Melanocyte Models

- ATCC provides several melanocyte cell lines to support research and development efforts
- From basic research through discovery and development to product testing
 - Primary cells
 - Adult and Neonatal
 - hTERT-immortalized primary cells
 - Adult Female Caucasian Donor
 - Neonatal Male Asian Donor
- Portfolio features
 - Reliability
 - Fully characterized cells
 - Optimized growth protocols
 - Scalable to research needs
 - Biological relevancy

hTERT Immortalized Dermal Melanocytes - Data

Cell Immortalization Processes

Quick note about process

Cell cycle – removes stops or otherwise encourages the cell cycle

Immortalization using telomerase differs from methods where cell cycle proteins are inhibited or overexpressed.

ATCC has expertise in several methods

Cell Immortalization Process - hTERT Alone

Melanocytes have been immortalized by expression of human telomerase gene

Growth of Immortalized Melanocyte Models

Consistent growth up to 40 population doublings (PD)

hTERT-immortalized Dermal Melanocytes Growth Media:

- Dermal Cell Basal Medium (ATCC[®] PCS-200-030[™])
- Adult Melanocyte Growth Kit (ATCC[®] PCS-200-042[™])
- 0.5 μg/mL puromycin

Confirmation of hTERT Expression by TRAP Assay

Telomerase Reverse Transcriptase Amplification Protocol (TRAP)

Assays for detection of telomerase activity. Acta Naturae. 2011 Jan;3(1):48-68. PMID: 22649673

Melanin Expressed and Maintained Throughout Many Passages

Cell pellets in centrifuge tube

ATCC[®]

Melanin Expressed and Maintained Throughout Passaging

Cell pellets in centrifuge tube

hTERT Immortalized Neonatal Melanocyte Cell Pellet

- hTERT Immortalized Neonatal Melanocyte Cells were detached from flask using trypsin and pelleted in centrifuge tube
- Images are taken at given time points throughout several months of continuous passaging

Negative control (adipose) cell pellet

Immortalized Adult Melanocyte Morphology

Morphology closely resembles primary cell

hTERT immortalized cells display the multi-dendritic morphology characteristic of melanocytes

Scale bar for neonatal micrographs = 82 µm

Immortalized Adult Melanocyte Karyotype

Compared to typically polyploid cancer cell lines hTERT melanocytes have a relatively stable karyotype

hTERT Neonatal Dermal Melanocytes

near diploid male karyotype

near diploid female karyotype

Karyotype performed at high passage number

Adult Melanocyte Characteristics: Molecular Markers

Immunocytochemistry – Molecular marker staining of adult melanocytes

Neonatal Melanocyte Characteristics: Molecular Markers

Immunocytochemistry – Molecular marker staining of neonatal melanocytes

Scale Bar (in green) = 100 µm

Melanocyte 3D Organotypic Culture - Method

Embed BJ-5 cells into a collagen matrix contained in a single deep well with a control insert

Create conditions with only fibroblasts and keratinocytes or with all three cells fibroblasts, melanocytes, and keratinocytes

Grow for 14 days -> fix and stain (Fontana Masson)

hTERT Immortalized Fibroblasts: CRL-4001[™] hTERT Immortalized Keratinocytes: CRL-4048[™]

Adult Melanocyte 3D Organotypic Culture

Postepy Dermatol Alergol. 2013 Feb; 30(1): 30–41.

- Brightfield images of fixed paraffin embedded sections
- Fontana Masson stain
- Brightness adjusted +20%
- Yellow arrows indicate melanin deposits
- Cultures with melanocytes develop more fully

Fibroblast/Keratinocytes

ATCC

Neonatal Melanocyte 3D Organotypic Culture

Melanin deposits visible in 3D organotypic co-culture

Fontana Masson Stain, 20x Brightfield, Brightness +20%

ATCC°

25

Fibroblast/Keratinocytes

Melanin Synthesis Pathway

Figure 1. Representation of the melanogenic unit and melanin synthesis in melanosomes (**left**). Schematic representation of eumelanin and pheomelanin biosynthetic pathways (**right**).

Hushcha Y, Blo I, Oton-Gonzalez L, et al. microRNAs in the Regulation of Melanogenesis. *Int J Mol Sci.* 2021;22(11):6104. Published 2021 Jun 5. doi:10.3390/ijms22116104

Adult Melanocyte Stimulation and Inhibition Study

Testing responsiveness to stimulators and inhibitors of melanogenesis

27

•

•

Neonatal Melanocyte Stimulation and Inhibition Study

Testing responsiveness to stimulators and inhibitors of melanogenesis

ATCC

Summary and Conclusions

- Immortalized melanocytes are available from adult and neonatal donors
- CRL-4059/64 hTERT immortalized cell lines show key melanocyte characteristics:
 - Multi-dendritic morphology, expression of key molecular markers, melanin production
 - Form epidermal structures in a 3d organotypic co-culture system
 - Show responsiveness to stimulators and inhibitors of melanogenesis
- ATCC hTERT-immortalized primary melanocytes
 - Replicate primary cell characteristics
 - Provide greatly increased longevity
 - Complement ATCC's current primary melanocyte offerings

Summary and resources

- ATCC provides a portfolio of over 50 hTERT-immortalized primary cells to the life science research community
- ATCC R&D actively develops new immortalized cell lines
 - Custom immortalization service is available
 - A variety of technologies are available
- hTERT-immortalized primary cells provide primary cell functionality with increased longevity
- hTERT cells are a user-friendly solution for building reliable cell models for a variety of research needs
- Multiple primary cell and hTERT-immortalized primary cell resources are available at

www.atcc.org/hTERT

