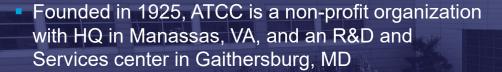
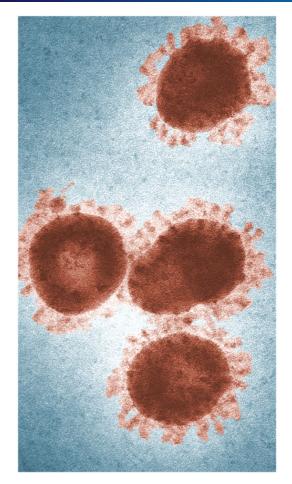


Amplify Your Viral Vaccine Production with CRISPR/Cas9 Engineered Host Cells


Credible Leads to Incredible™

Liz Turner Gillies, PhD

<image>

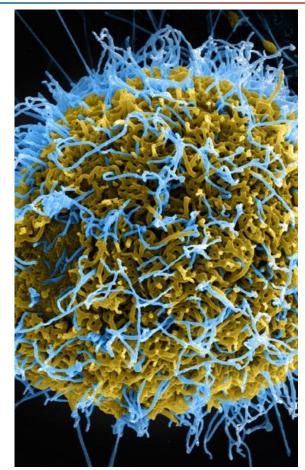


- World's largest, most diverse biological materials and information resource for microbes – the "gold standard"
- Innovative R&D company featuring gene editing, microbiome, NGS, advanced models
- cGMP biorepository

- Partner with government, industry, and academia
- Leading global supplier of authenticated cell lines, viral and microbial standards
- Sales and distribution in 150 countries, 19 international distributors
- Talented team of 450+ employees, over onethird with advanced degrees

Outline: CRISPR-Cas9 Engineered Viral Host Cells

- I. Introduction to viral vaccine production and CRISPR/Cas9 gene editing
- II. Gene editing of Vero cells for enhanced viral production

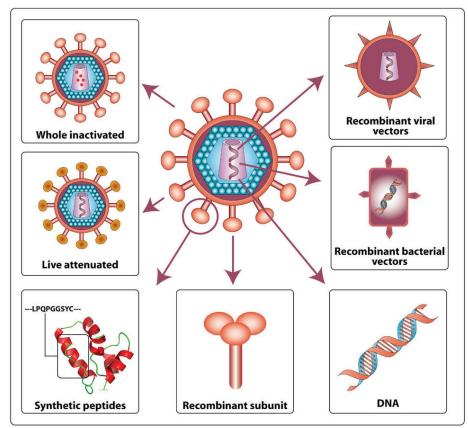

III.Gene editing of MDCK cells for enhanced viral production

ATCC

Coronavirus, image courtesy of CDC Public Health Image Library

I. Introduction to Vaccine Production and Gene Editing

- Overview of viral vaccines
- Manufacturing of viral vaccines in host cell culture
- Cell lines used for viral vaccine manufacturing
- Opportunity for improvement of viral production cells
- Technology for cell line modification
- Host cell anti-viral response
- Use of NHEJ repair mechanism for gene knockout
- Development of enhanced viral production cell lines



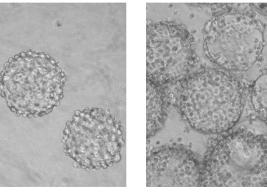
ATCC°

Overview of Viral Vaccines

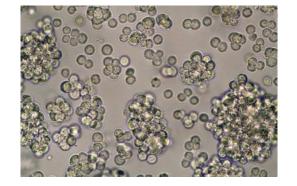
Vaccines against viral infections are designed to introduce your immune system to that virus without actually making you sick

Examples of Viral Vaccines

- Flu shot (Influenza)
- MMR (Measles, mumps, rubella)
- Varicella (Chickenpox)
- Polio vaccine
- HPV (Human papillomavirus)
- HepA/B/C (Viral hepatitis)
- Rotavirus vaccine
- Rabies vaccine


Manufacturing of Viral Vaccines in Host Cell Culture

Viral products for vaccines are primarily manufactured in large-scale tissue culture systems


Large-scale bioreactor

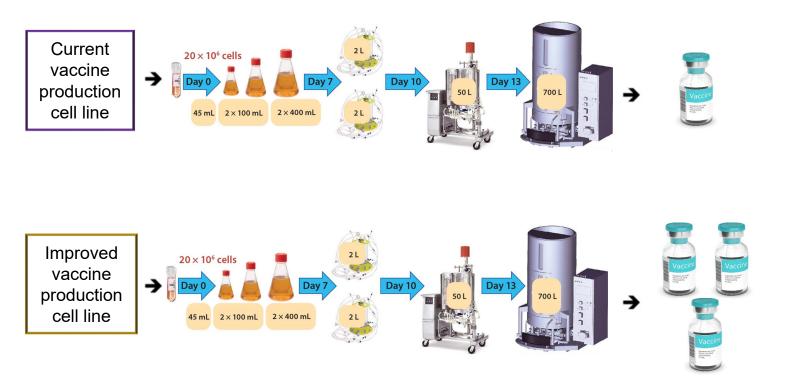
Adherent cells on micro-carrier beads Vero cells MRC-5 cells

PLoS ONE 3(3):e1810

Carrier-free suspension culture

bioprocessintl.com/upstream-processing/upstream-single-use-technologies

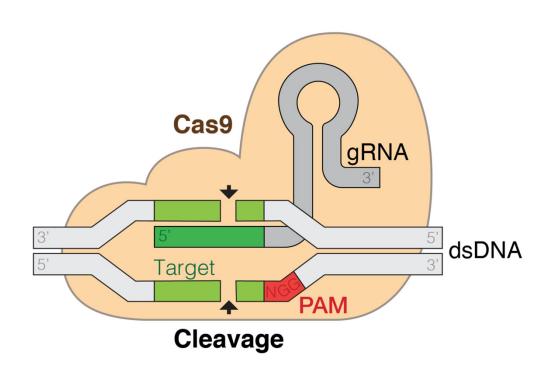
Cell Lines Used for Viral Vaccine Manufacturing


A handful of traditional cell lines are used for viral vaccine manufacturing

Name	ATCC [®] No.	Species	Cell type	Year Isolated	Vaccines
MDCK	CCL-34™	<i>Canis familiaris</i> (domestic dog)	Kidney epithelial	1958	Influenza A, influenza B (seasonal)
Vero	CCL-81™	<i>Cercopithecus aethiops</i> (green monkey)	Kidney epithelial	1962	Rotavirus, vaccinia, polio, rabies, Japanese encephalitis, dengue, Zika, Chikungunya
WI-38	CCL-75™	Homo sapiens (human)	Lung fibroblast	1961	Adenoviruses, rubella, measles, mumps, varicella zoster, polio, Hep A, rabies
MRC-5	CCL-171™	<i>Homo sapiens</i> (human)	Homo sapiens Lung 20ster, polio, hepa		Zoster, polio, hepatitis A, hepatitis B, Varicella, measles, mumps, rubella, rabies

Opportunity for Improvement of Viral Production Cells

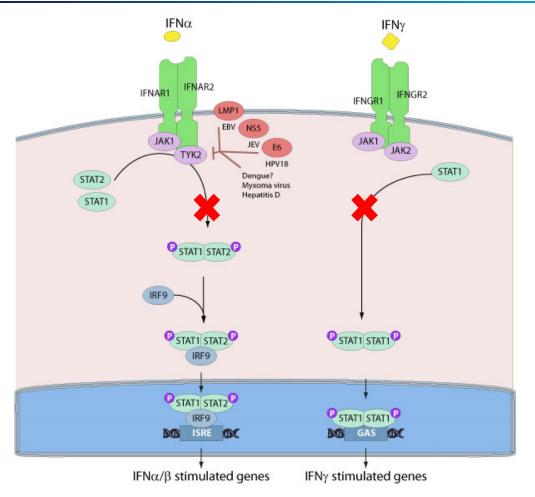
Can cell lines be enhanced to produce viruses more efficiently?


 Faster virus production

- Smaller production scale required to meet manufacturing goals
- Lower production costs
- Fewer regulatory hurdles for using new version of approved cell line than for a new cell line

Technology for Cell Line Modification

CRISPR-Cas9 can be used to permanently change the genetics and characteristics of a cell line

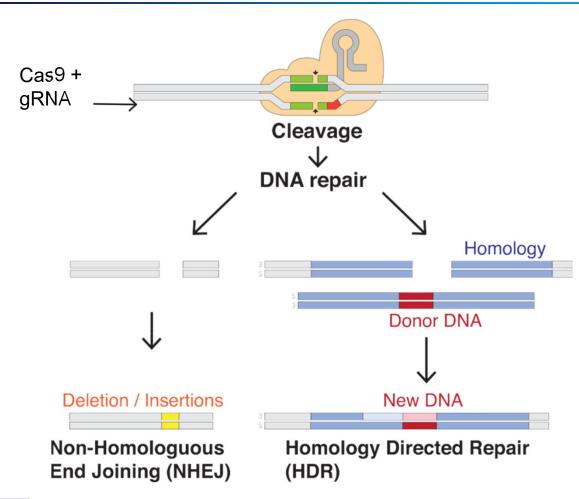


CRISPR-Cas9 can be used to:

- Locate specific gene sequences inside the nucleus of a cell
- Cut the genomic DNA at that specific location
- Change the genetic sequence at the cut site (mutation)
- Add new genetic sequence to the cut site (insertion)
- Remove genetic sequence from the cut site (deletion)
- Permanently change the characteristics of the cell controlled by the modified gene

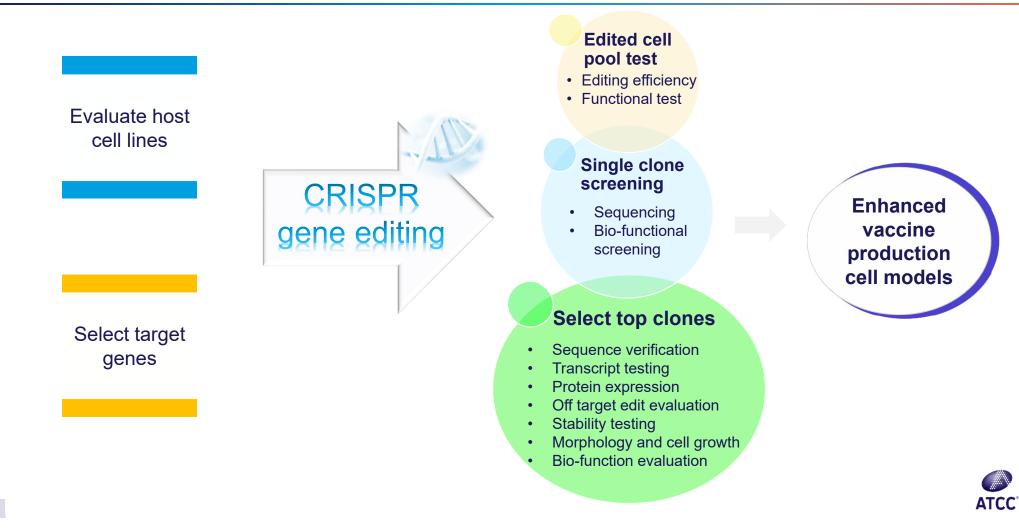
ATCC°

STAT1 Signaling Controls Host Cell Anti-viral Response

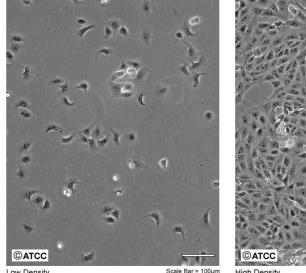


- Cell lines used in viral production have anti-viral interferon response
- STAT1 protein is essential for anti-viral interferon response
- Strategy use CRISPR/Cas9 to disrupt STAT1 gene in cells used for viral production
- No STAT1 protein is produced when STAT1 gene is disrupted
- Virus production is enhanced in STAT1 deficient cell lines

viralzone.expasy.org - inhibition of host STAT1 by virus


Use of NHEJ Repair Mechanism for Gene Knockout

- Design and construct CRISPR/Cas9 reagents to target STAT1 gene
- Transient transfection of Cas9 and STAT1 gRNA constructs into viral production cells
- CRISPR/Cas9 creates double-strand break (DSB) in STAT1 gene using
- DSB is repaired by non-homologous end joining, an error-prone cellular DNA repair mechanism
- NHEJ results in small insertions and deletions at repair site
- Out-of-frame insertions and deletions near the start of STAT1 gene result in a functional protein knockout



Development of Enhanced Viral Production Cell Lines

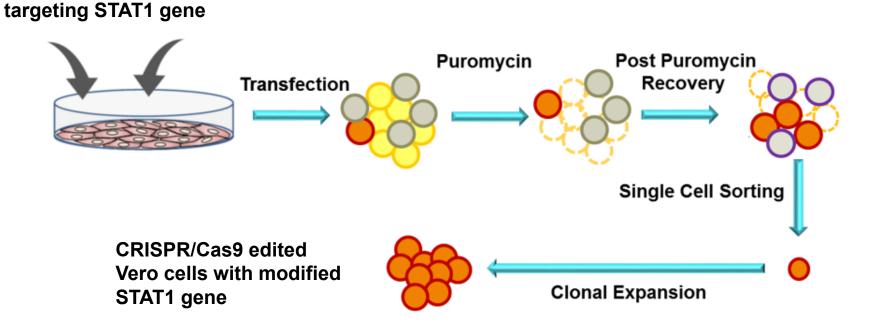
Viral Vaccine Production in Vero Cells

ATCC Number: CCL-81 Designation: Vero

Low Density

High Density

- Vero is an adherent epithelial cell line established from the kidney of a normal adult African green monkey in 1962.
- Vero cells are unusually permissive to infection by a wide variety of animal viruses.


- Vero remains one of the most commonly used cell lines for cell-based viral vaccine production.
- Vero cell line has received worldwide regulatory acceptance.
- Abundant studies on the production of a variety of viruses using Vero cells, such as:
 - Rotavirus
 - Influenza
 - Vaccinia
 - Polio
 - Rabies virus
 - Japanese encephalitis virus
 - Dengue
 - Zika
 - Chikungunya.

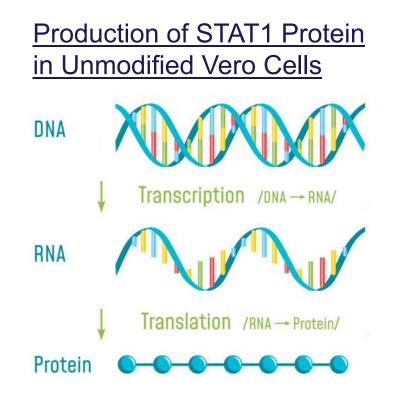
Workflow of CRISPR/Cas9 Gene Editing

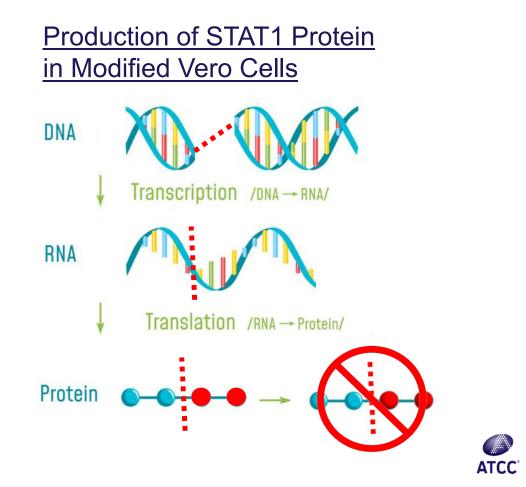
Used to modify the STAT1 gene of Vero cells

Cas9-Puro and guide RNA

Cas9 constructs are expressed transiently and are not integrated into gene edited clones

STAT1 KO in CRISPR-Cas9 Edited Vero Cell Clone


Selected STAT1 KO Vero cell clone has a 199 nt deletion in both chromosomal copies of STAT1


Vero WT Reference Alignment to Vero WT RV.ape 9-H1 E4 p2.ape 9-H1 E4 p18.ape	>TCAATTGTATTTGC >TCAATTGTATTTGC >TCAATTGTATTTGC	TGAATGAAGA TGAATGAAGA	AAACTGCCTT	CCATCAACAT CCATCAACAT	GAGAACATTT GAGAACATTT	СААСТААААС	ACAAAAACCA	GGTCATACCT GGTCATACCT	GAAGATTACG	CTTGCT>396 CTTGCT>391
Vero WT Reference Alignment to Vero WT RV.ape 9-H1 E4 p2.ape 9-H1 E4 p18.ape	> <u>TTTCCTTATGTTAT</u> >TTTCCTTATGTTAT >TTTCCTTATGTTAT	GCTGTAGCAA GC							* AAAACGGATG AAAACGGATG	
Vero WT Reference Alignment to Vero WT RV.ape 9-H1 E4 p2.ape 9-H1 E4 p18.ape	> <u>AATGAAACATCATT</u> >AATGAAACATCATT >AAT		TCCCTAGGAG	ATTTAACATT	TACATACTTC	ATTCTAGAAC		CGTAAAACAG	ACAAAACAAA	
Vero WT Reference Alignment to Vero WT RV.ape 9-H1 E4 p2.ape 9-H1 E4 p18.ape	> <u>TTTCCTTATTGAAA</u> >TTTCCTTATTGAAA >	ITATTAAAAA	* CCATTTAAGT CCATTTAAGT CCATTTAAGT	ATTTTCTTAG ATTTTCTTAG	GTTTATTTC GTTTATTTTC	TTCTTCTGAA	ACTGATACTG	CTTTTAGCAG	TAGT <mark>G</mark> TTATA TAGT-TTATA	TGG <mark>GN</mark> T>696 TGGTAT>491

Sequence Deletion Results in Functional STAT1 Knockout

Edited STAT1 gene produces a truncated, non-functional protein that is rapidly degraded

Confirmation of STAT1 Protein Knockout

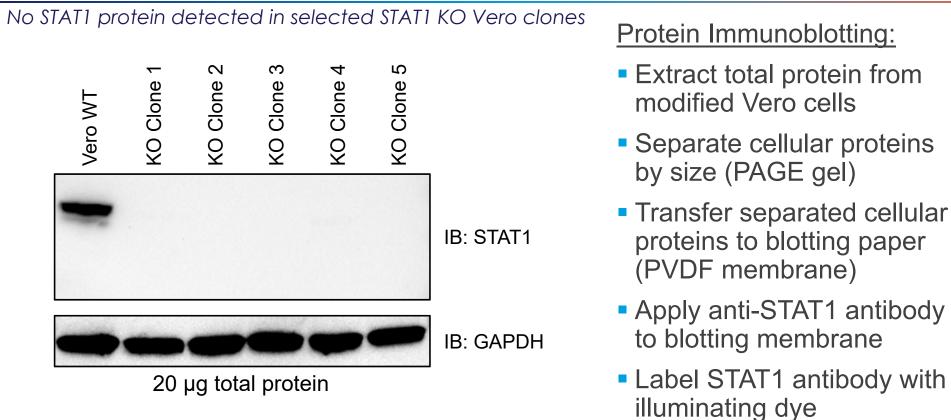
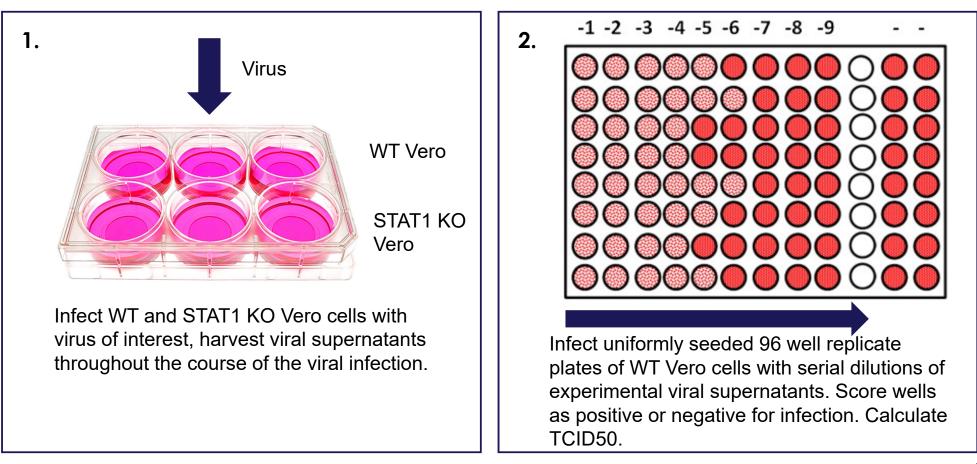
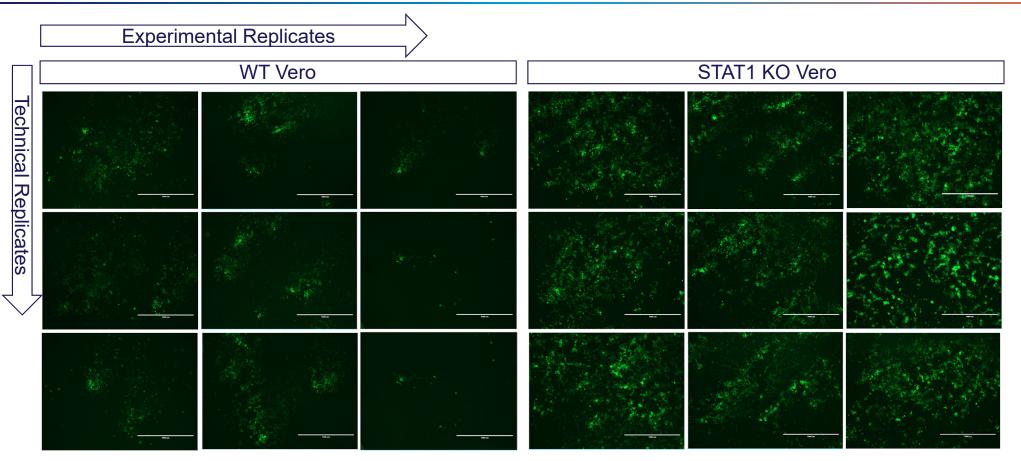


 Image to visualize STAT1 protein

Confirmation of STAT1 Gene Disruption

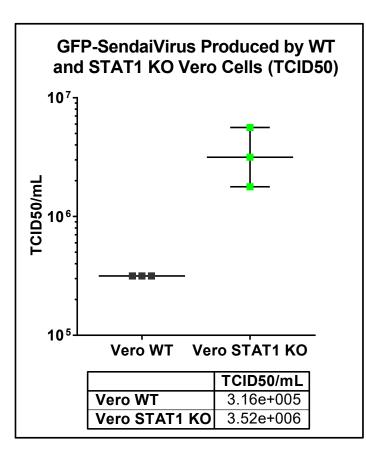

	STAT1 gDNA				 S	TAT1	cDN	A
	Vero WT	STAT1 KO p+2	STAT1 KO p+18	No Template	Vero WT	STAT1 KO p+2	STAT1 KO p+18	No Template
3000 2000 1500 1200 1000 800 700 600 500 400 300					-	-]	

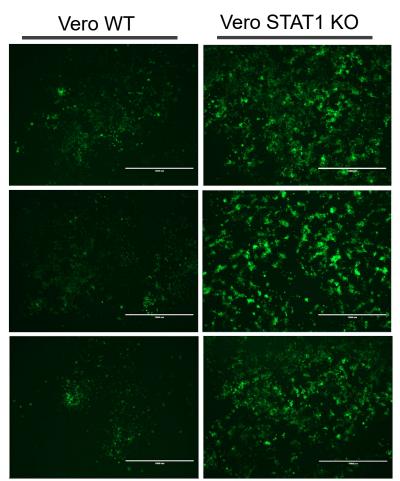
PCR: STAT1



TCID50 Measurement of Virus Concentration

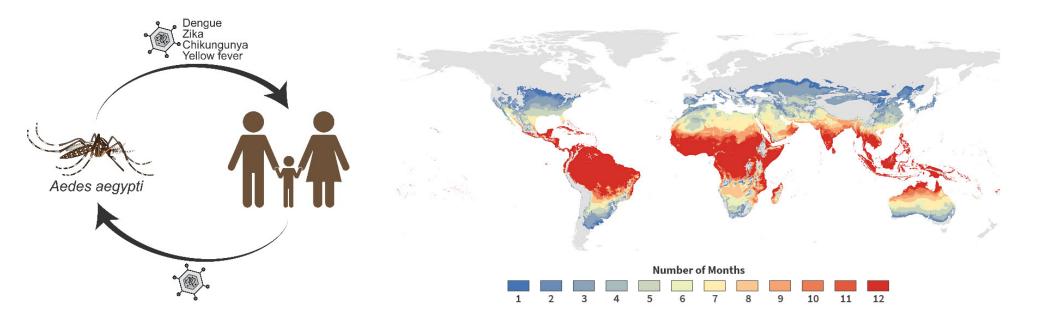
TCID50 – endpoint dilution assay that measures 50% <u>Tissue</u> <u>Culture</u> <u>Infective</u> <u>D</u>ose

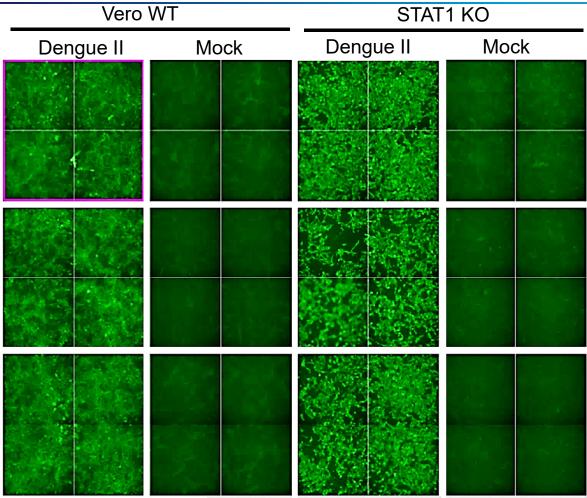

Increased Reporter Virus Production in STAT1 KO Vero

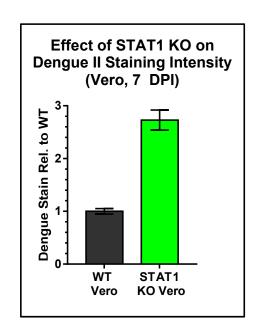


GFP-SeV Production in WT and STAT1 KO Vero Cells

STAT1 KO Vero cells show 10-fold enhancement in GFP-SeV production at 72 HPI

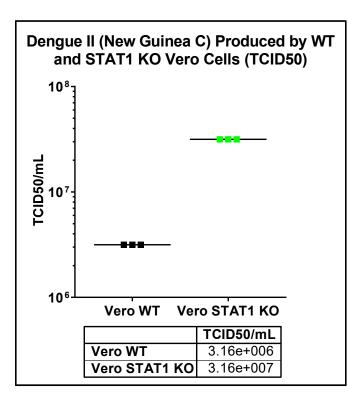


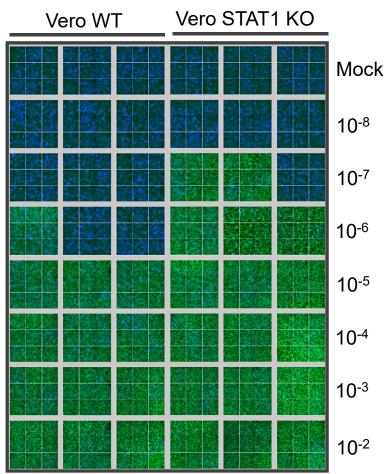

Vaccines Made in Vero Cells: Dengue Virus


Expansion of Aedes aegypti habitat is increasing the demand for Dengue vaccine

ATCC

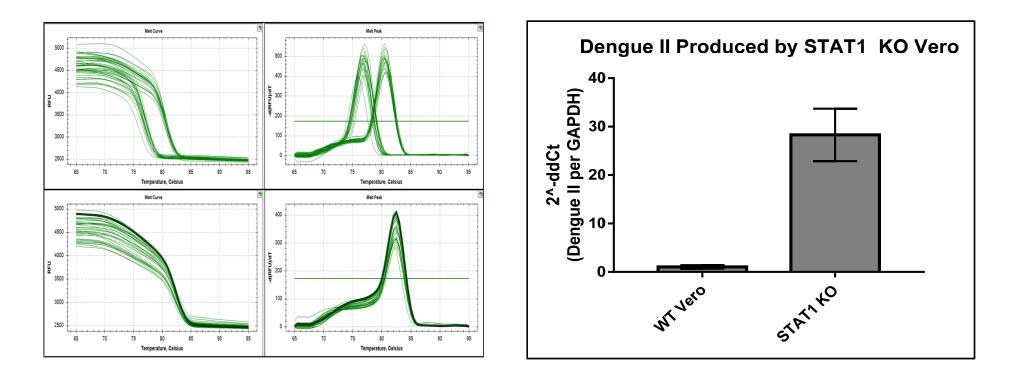
Evaluation of Dengue II Production in STAT1 KO Vero

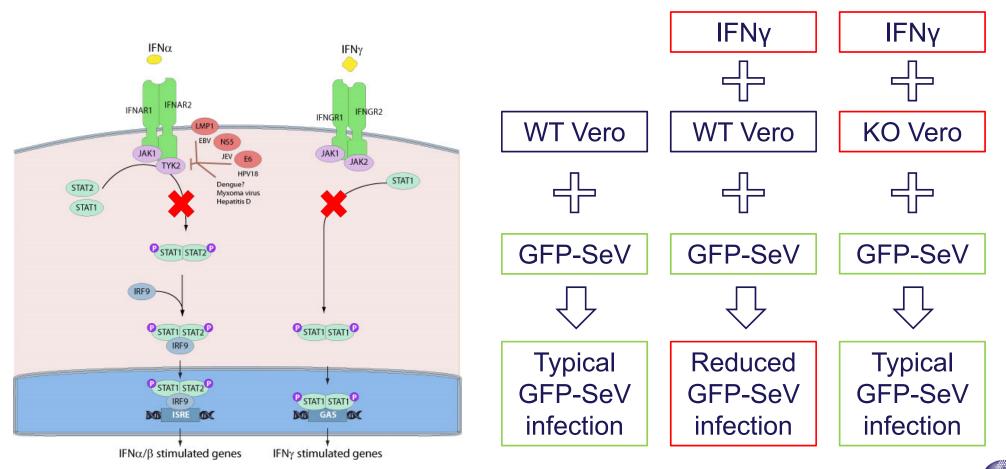




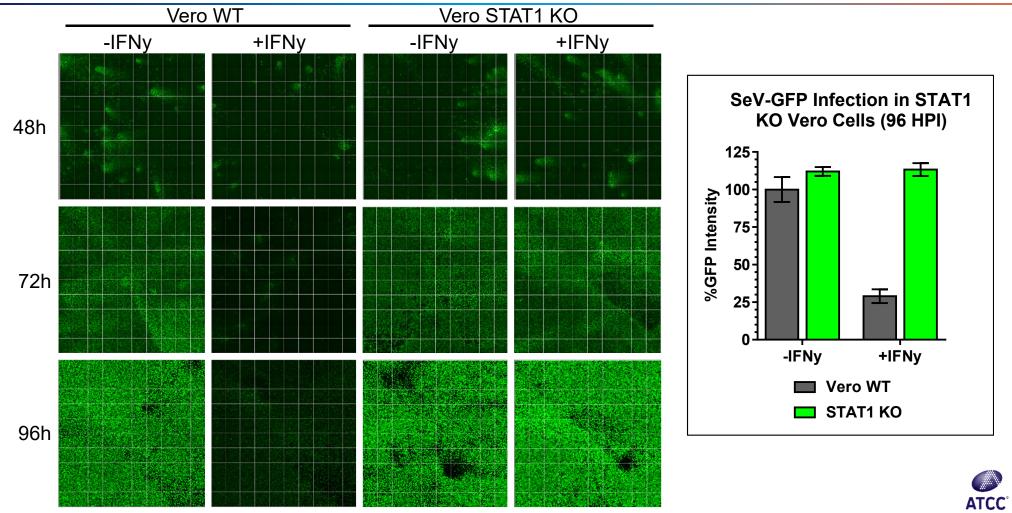
Enhanced Dengue Virus Production – TCID50

Dengue II staining of TCID50 of viral supernatants from WT and STAT1 KO Vero




Enhanced Dengue Replication – RT-PCR

RT-PCR shows 30-fold increase in Dengue II viral genomes produced in STAT1 KO Vero cells

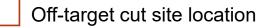


STAT1 KO Vero Cells Show No Response to Interferon

No Response to Interferon in STAT1 KO Vero Cells

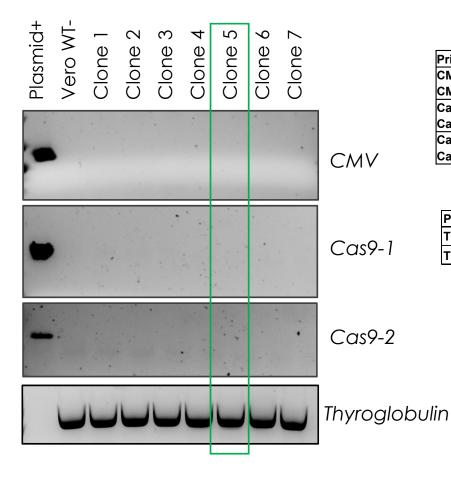
Screening for Off-Target Mutations

Cas9 has the potential to create mutations in sequences that resemble the targeted sequence


	Gene	Gene ID	Also Known As	Target Coordinates	Target Sequence	Туре	MM	CFD	WT	ко
	STAT1	103217529	Vero G2	chr10:76532444-76532466:-	TCATGACCTCCTGTCACAGC TGG	Exon	0	N/A		
1	EML6	103220249	EMAPL6	chr14:52084054-52084076:+	TCAT <mark>C</mark> AC TG CCTGTCACAGC CAG	Exon	3	0.1103		
2	NPB/ PCYT2	103243738/ 103243739	N/A	chr16:73777880-73777902:+	TC TGC ACCTCCTG <mark>C</mark> CACAGC TGG	Exon	4	0.099		
3	ZNF462	103219061	ZFPIP, Zfp462	chr12:32612133-32612155:-	TCA A G T CCTCCT A TAACAGC CGG	Exon	4	0.0698		
4	EPHX1	103230002	MEH, EPHX, EPOX, HYL1	chr25:3945289-3945311:-	TCA AC ACCT <mark>G</mark> CTGTCACA <mark>C</mark> C AGG	Exon	4	0.0652		
5	SYTL1	103225294	JFC1, SLP1	chr20:105436957-105436979:-	TC GG GACCTCCTG <mark>C</mark> CAC T GC GGG	Exon	4	0.0546		
6	CCDC180	103219164	C9orf174	chr12:42077653-42077675:+	TCATGACCT <mark>GTG</mark> GTCACAG <mark>A</mark> TGG	Exon	4	0.0299		
7	TG	103237469	TGN, AITD3	chr8:127328236-127328258:-	TCATGAC T T A CTCTCACAG <mark>G</mark> CGG	Exon	4	0.0188		
8	ECH1	103234640	HPXEL	chr6:33441150-33441172:-	TCAT <mark>C</mark> ACC <mark>G</mark> CCTGT <mark>G</mark> ACA T C CGG	Exon	4	0.0162		
9	GSDMA	103243525	GSDM, FKSG9, GSDM1	chr16:66196251-66196273:+	CCACGACCTCCT T GACAGC AGG	Exon	4	0.0083		
10	NRXN2	103233117	N/A	chr1:9583866-9583888:-	TCATGGCCTCCCATCACAGC TGG	Intron	3	0.6246		
11	ASIC4	103217917	ACCN4, BNAC4	ch10:105414648-105414670:-	GCATGACTTCCAATCACAGC CGG	Intron	4	0.6181		
12	FHOD3	103222526	FHOS2, Formactin2	chr18:44299974-44299996:-	CCAGGACCTACTGACACAGC AGG	Intron	4	0.2874		

Example of Off-Target Mutation Evaluation

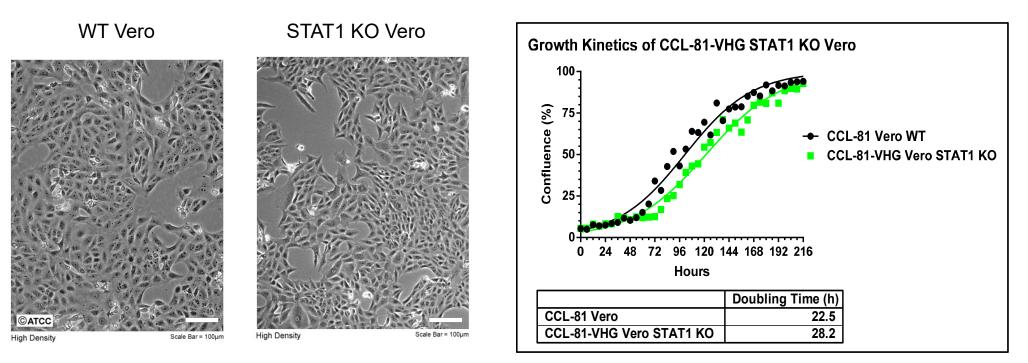
Sanger sequencing of off-target site shows no mutation across multiple gene-edited clones


st7_TG_10C12_TG2_FW.txt Matches st6_TG_9H1_TG2_FW.txt Matches:3 st5_TG_8F3_TG2_FW.txt Matches:4 st4_TG_2E10_TG2_FW.txt Matches: st3_TG_2C7_TG2_FW.txt Matches:4 st2_TG_2B11_TG2_FW.txt Matches:	398; Mismatches:15; Gap :402; Mismatches:11; Ga 98; Mismatches:14; Gaps 001; Mismatches:11; Gaps 399; Mismatches:14; Gap 01; Mismatches:12; Gaps 400; Mismatches:11; Gaps: 00; Mismatches:11; Gaps:	<pre>ps:30; Unattempted:0 :32; Unattempted:0 :291; Unattempted:0 s:369; Unattempted:0 :866; Unattempted:0 s:296; Unattempted:0</pre>					
				* *	* *	*	10033171
22>GTCAGGCCCAAGCCTCTGCAATGTGC 1>~~NNGNNNNNNNNNSC-ATGTGC	TAAAGAGTGGAGTCCTCTCCAGG		CAGCCTGCAGGGAAGAGGATG				
1>~~~~NNNNNNNNNSC AIGIGC		AGAGTTGGCTCAGGCTATGTCC					
	TNA-NAGTGGAGTCCTCTCCAGG						
1>NNNNNNNNNGCATGTGC	TAAGAGTGGAGTCCTCTCCAGG						
1>~~~~NNNNNNNNNSC-ATGTGC							
1>~~~~ <mark>NNNNNNNCNN</mark> TGC-ATGTGC			CAGCCTGCAGGGAAGAGGATG				
1>~~~~NNNNNNNNGC-ATGTGC		AGAGTTGGCTCAGGCTATGTCC					
	T-AAGAGTGGAGTCCTCTCCAGG	AGAGTTGGCTCAGGCTATGTCC	CAGCCTGCAGGGAAGAGGATG	GGGCCTTTTCCCCAGTGCA	TGCGACCAGGCCCAGGGC	GCTGCTGGTGTGTCAC	GGA>141
	-						
* *	* * •	* *	* *	* *	* *	*	*
172>CAGTGGAGAAGAGGTGCCTGAGACGC	GTGTGGCCGGGAGCCAGCCCGCC	IGTGAGAGTAAGTCATGACCCC	CTGGGGGAAAGACAAGGCCTG	CATATCTGTTCTTTGATCC	AGACTGAGTGAAGTTCTAGA	GAAACTGGGAAGGCGC	GGG>321
144>CAGTGGAGAAGAGGTGCCTGAGACGC	GTGTGGCCGGGAGCCAGCCCGCC	IGTGAGAGTAAGTCATGACCCC	CTGGGGGAAAGACAAGGCCTG	CATATCTGTTCTTTGATCC	AGACTGAGTGAAGTTCTAGA	GAAACTGGGAAGGCGG	GGG>293
144>CAGTGGAGAAGAGGTGCCTGAGACGC	GTGTGGCCGGGAGCCAGCCCGCC	IGTGAGAGTAAGTCATGACCCC	CTGGGGGAAAGACAAGGCCTG	CATATCTGTTCTTTGATCC	AGACTGAGTGAAGTTCTAGA	GAAACTGGGAAGGCGG	GGG>293
143>CAGTGGAGAAGAGGTGCCTGAGACGC	CGTGTGGCCGGGGAGCCAGCCCGCC	IGTGAGAGTAAGTCATGACCCC	CTGGGGGAAAGACAAGGCCTG	CATATCTGTTCTTTGATCC	AGACTGAGTGAAGTTCTAGA	GAAACTGGGAAGGCGG	GGG>292
143>CAGTGGAGAAGAGGTGCCTGAGACGC	GTGTGGCCGGGAGCCAGCCCGCC	IGTGAGAGTAAGTCATGACCCC	CTGGGGGAAAGACAAGGCCTG	CATATCTGTTCTTTGATCC	AGACTGAGTGAAGTTCTAGA	AGAAACTGGGAAGGCGG	GGG>292
144>CAGTGGAGAAGAGGTGCCTGAGACGC	CTGTGGCCGGGAGCCAGCCCGCC	IGTGAGAGTAAGTCATGACCCC	CTGGGGGAAAGACAAGGCCTG	CATATCTGTTCTTTGATCC	AGACTGAGTGAAGTTCTAGA	GAAACTGGGAAGGCGG	GGG>293
144>CAGTGGAGAAGAGGTGCCTGAGACGC	GTGTGGCCGGGAGCCAGCCCGCC	IGTGAGAGTAAGTCATGACCCC	CTGGGGGAAAGACAAGGCCTG	CATATCTGTTCTTTGATCC	AGACTGAGTGAAGTTCTAGA	GAAACTGGGAAGGCGG	GGG>293
142>CAGTGGAGAAGAGGTGCCTGAGACGC	GTGTGGCCGGGAGCCAGCCCGCC	IGTGAGAGTAAGTCATGACCCC	CTGGGGGAAAGACAAGGCCTG	CATATCTGTTCTTTGATCC	AGACTGAGTGAAGTTCTAGA	GAAACTGGGAAGGCGG	GGG>291
142>CAGTGGAGAAGAGGTGCCTGAGACGC	GTGTGGCCGGGAGCCAGCCGCC	IGTGAGAGTAAGTCATGACCCC	CTGGGGGAAAGACAAGGCCTG	CATATCTGTTCTTTGATCC	AGACTGAGTGAAGTTCTAGA	GAAACTGGGAAGGCGG	GGG>291

Cas9/CMV Plasmid Integration Assessment

No Cas9/CMV integration in selected STAT1 KO Vero clone

Primer	Sequence (5' to 3')	Tm (Q5)	Anneal	Product
CMV-FW	TGGCTCTAGAGGTACCCGTTACATAAC	69	70	342
CMV-RV	AGATGGGGAGAGTGAAGCAGAAC	69	70	342
Cas9-1-FW	CTATAAGGACCACGACGGAGACTACAAG	69	70	323
Cas9-1-RV	TTCTTCTGGCGGTTCTCTTCAGC	69	///	323
Cas9-2-FW	TGTCTGCCAGACTGAGCAAGAG	69	70	200
Cas9-2-RV	TCTCGGTGTTCACTCTCAGGATGT	69	70	300


Primer	Sequence (5' to 3')	Tm (Q5)	Anneal	Product
TG FW	GCTCATCTGGCTTGTCTCTGTGT	69°C	70°C	441 hn
TG RV	CCCAGGCTCTTTCTGACTTCAGTTC	69°C	70 C	441 bp

Selected Clone

Morphology and Growth Kinetics of STAT1 KO Vero Cells

Modified cell line has similar morphology and grows slower than parental Vero cell line

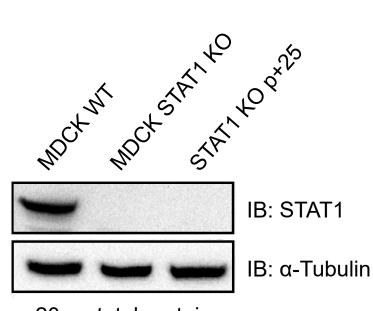
Summary: Enhanced Viral Production Vero Cells

- Successful STAT1 knockout in Vero cells using CRISPR/Cas9
- 10-fold higher yield of both reporter virus and model clinical virus (Dengue II) in STAT1 KO Vero cells relative to unmodified cells
- 30-fold increase in Dengue viral genome replication in STAT1 KO Vero cells
- STAT1 KO Vero cells show no anti-viral response to interferon treatment
- STAT1 knockout genotype is stable over time in selected Vero clone
- No Cas9 plasmid integration detected in selected STAT1 KO Vero clone
- No mutations detected at selected Cas9 off-target cut sites
- STAT1 KO Vero cells have similar morphology and a slower doubling time than unmodified Vero cells



ATCC°

Ebola virus budding from a Vero cell, image courtesy of NIAID


MDCK Cells for Influenza Vaccine Production

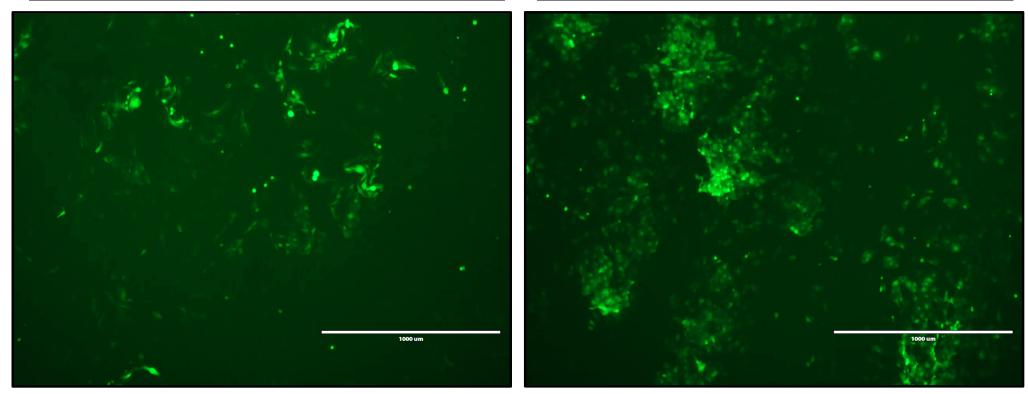
- Over 20% of the human population is infected with the influenza virus each year.
- Traditional production of flu vaccines involves infection and subsequent harvest of embryonated chicken eggs.
 - Time constraints, high production cost
 - High risk of microbial contamination
 - -Allergic reactions in some recipients
- Mammalian cell culture-based Influenza vaccines as alternatives to egg-based vaccines.
- A need for rapid and large-scale production of flu vaccine for pandemic preparedness.
- 2012, FDA approved Flucelvax as the first mammalian cell-based (MDCK-produced) Influenza vaccine in US.

STAT1 Protein Knockout in MDCK Cells

Stability of STAT1 KO MDCK clone confirmed by immunoblot

20 µg total protein

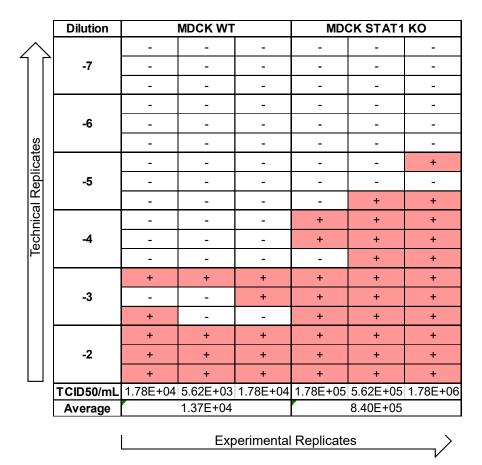
- Short nucleotide insertions and deletions near the beginning of the STAT1 gene were made using CRISPR/Cas9.
- The modified STAT1 gene produces truncated, non-functional STAT1 protein.
- Truncated STAT1 protein is rapidly degraded, resulting in a functional STAT1 protein knockout.
- Lack of functional STAT1 protein results in a lack of anti-viral interferon signaling.

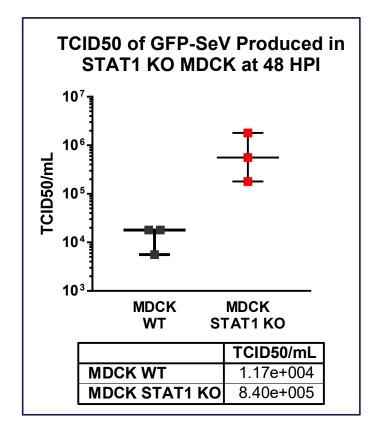


GFP-SeV Infection in WT and STAT1 KO MDCK Cells

GFP reporter virus replicates more quickly in STAT1 KO MDCK cells than in WT MDCK cells

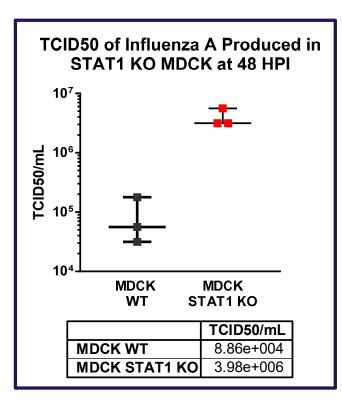
MDCK WT + GFP-SeV (48 HPI)

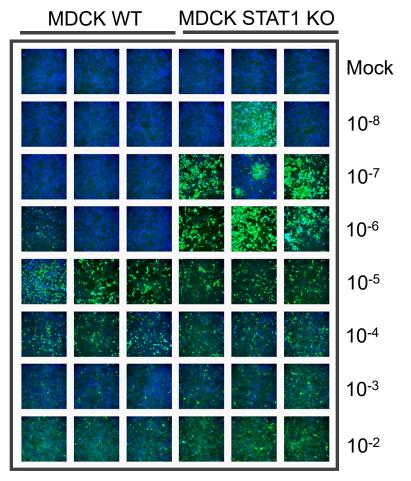

MDCK STAT1 KO + GFP-SeV (48 HPI)



GFP-SeV Production in WT and STAT1 KO MDCK Cells

>50-fold increase in GFP-SeV production in STAT1 KO MDCK

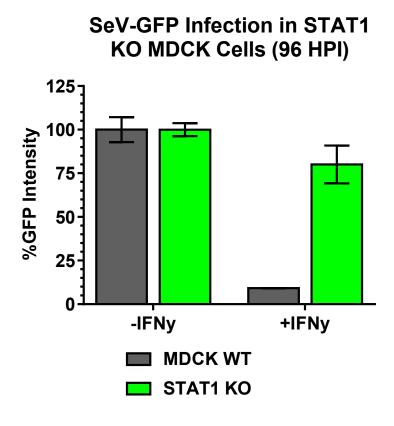


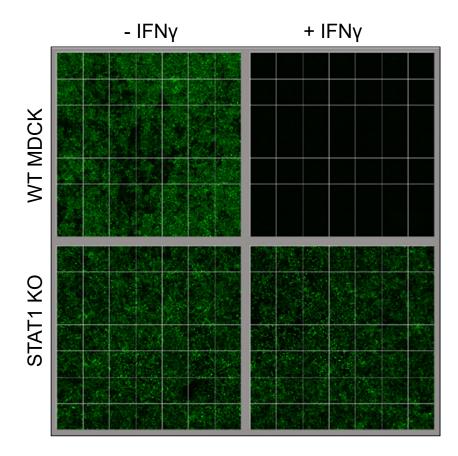


ATCC°

Production of Influenza A in STAT1 KO MDCK

Staining of TCID50 of viral supernatants from STAT1 KO MDCK shows 30-fold increase in viral production

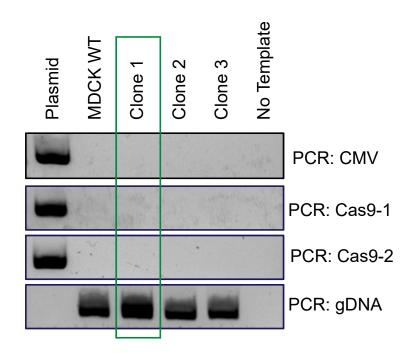




ATCC°

No Response to Interferon in STAT1 KO MDCK Cells

MDCK cells were treated with recombinant canine interferon gamma then infected with reporter virus



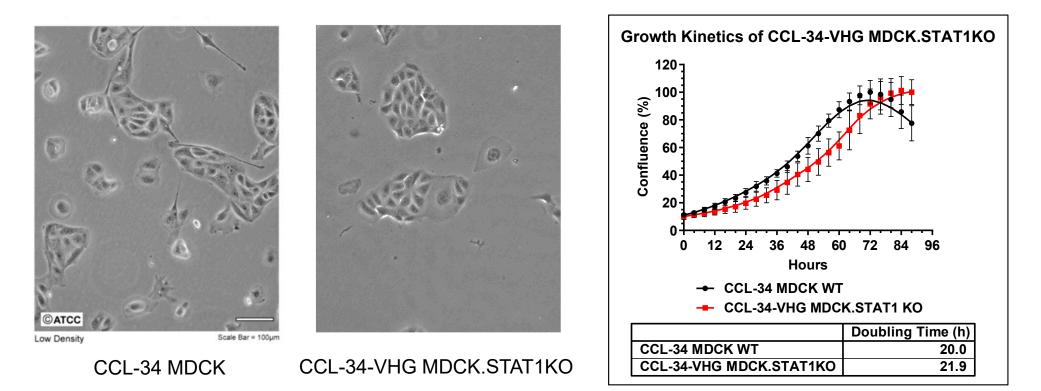
Cas9/CMV Plasmid Integration Assessment

No Cas9/CMV integration in STAT1 KO MDCK clone

Primer	Sequence (5' to 3')	Tm (Q5)	Anneal	Product
CMV-FW	TGGCTCTAGAGGTACCCGTTACATAAC	69	70	342
CMV-RV	AGATGGGGAGAGTGAAGCAGAAC	69	70	342
Cas9-1-FW	CTATAAGGACCACGACGGAGACTACAAG	69	70	323
Cas9-1-RV	TTCTTCTGGCGGTTCTCTTCAGC	69	70	323
Cas9-2-FW	TGTCTGCCAGACTGAGCAAGAG	69	70	300
Cas9-2-RV	TCTCGGTGTTCACTCTCAGGATGT	69	70	300
cfSTAT1 E2 FW3	GGCTTCTTGAATAATTTTCATAAGGAAAGCA	65 66		247
cfSTAT1 E2 RV3	CTTATGCTTGGGAACATTTTGGC	65	66	247

Selected Clone

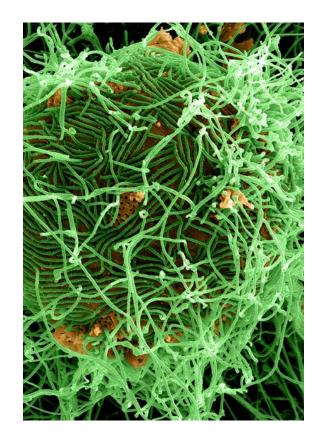
Screening for Off-Target Mutations in STAT1 KO MDCK


No mutation detected in Cas9 off-target screen

	Gene	Gene ID	Gene Description	Target Sequence	Туре	MM	CFD	Tm (Q5)	Anneal:	Product	STAT1 KO
	STAT1	488449	signal transducer and activator of transcription 1	GAGGTCGTGAAAACGGATGG TGG	Exon	0	N/A	65°C 65°C	66°C	247 bp	
1	CDH13	489689	cadherin 13	GA A GTC A TGAAAA T GGATG A AGG	Intron	4	0.516	66°C 68°C	67°C	331 bp	
2	MYRIP	485603	myosin VIIA and Rab interacting protein	GAGGTC <mark>CA</mark> GAAAAC <mark>A</mark> GATG A GGG	Intron	4	0.485	67°C 68°C	68°C	442 bp	
3	ASIC2	491150	acid sensing ion channel subunit 2	GAGGTC AG GAAA <mark>G</mark> C A GATGG GGG	Intron	4	0.450	68°C 67°C	68°C	413 bp	
4	CCDC170	476248	coiled-coil domain containing 170	AAAGT <mark>TC</mark> TGAAAACGGATGG TGG	Intron	4	0.431	68°C 68°C	69°C	618 bp	
5	PAK5	485772	p21 (RAC1) activated kinase 5	AAGGTCCTGAAGATGGATGG AGG	Intron	4	0.328	67°C 67°C	68°C	537 bp	
6	SLAMF6	100684044	SLAM family member 6	G G GG G CGTG G AAAC A GATGG GGG	Intron	4	0.268	69°C 67°C	68°C	795 bp	

MDCK Morphology and Growth Kinetics

Modified cell line has similar morphology and grows slightly slower than parental MDCK cell line



Summary - Enhanced Viral Host Cells

- CRISP-Cas9 is a powerful technology for precise genetic modification in various organisms. ATCC is broadly utilizing CRISPR across our portfolio of cell lines to develop enhanced products to meet critical customer needs.
- Vero and MDCK cells have been modified by CRISPR-Cas9 to have a permanent increase in viral production capacity.
- Modified Vero and MDCK cells have been thoroughly characterized for viral production phenotype, stability of STAT1 knockout genotype, lack of Cas9 plasmid integration, and absence of off-target mutations.
- Enhanced viral production cell lines have broad applicability for basic research, production of high-titer viral stocks, and manufacturing of viruses and viral vaccines.

Ebola virus infecting Vero cell, image courtesy of NIAID

ATCC Coronavirus Research Materials

- Synthetic Molecular Standards for SARS-CoV-2 Coming Soon!
- Coronavirus strains:
 - -Heat-inactivated SARS-CoV-2 Coming Soon!
 - -Betacoronavirus 1 OC43
 - -Human coronavirus 229E
- SARS-CoV-2 Genomic RNA Coming Soon!
- Cell Lines for Enhanced Virus Production
- Custom Solutions

www.atcc.org/coronavirus

© 2020 American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise.

