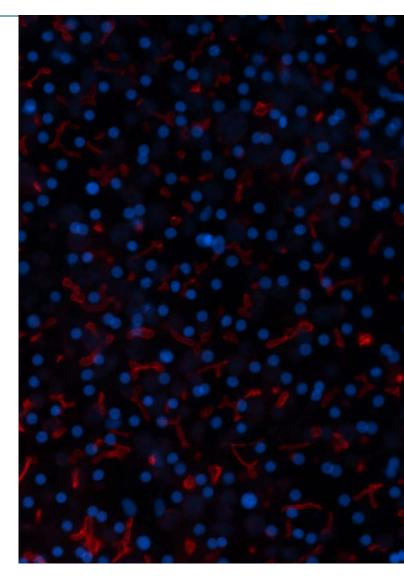

Next-generation cancer models from the Human Cancer Models Initiative

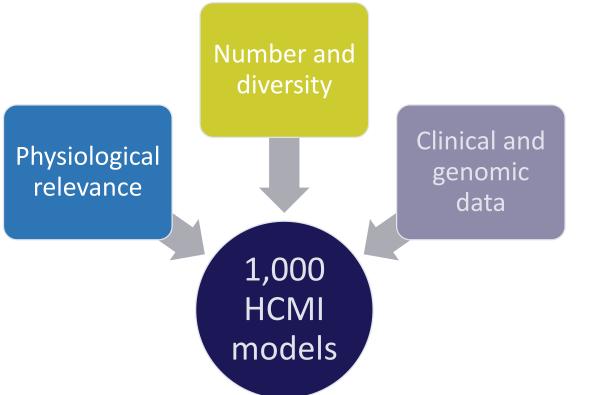
James M. Clinton, Ph.D. Senior Scientist, ATCC Cell Systems

Credible Leads to Incredible™

- What is Human Cancer Models Initiative?
- What are next-generation cancer models?
- Resources to learn more about the HCMI and the models at ATCC
- HCMI models available
- Summary


 Patients do not respond to treatments as predicted, despite huge advances in genomic analysis of primary tumors and new drug targets.

There is a need for better preclinical models to predict therapeutic outcomes.


Why are new models needed?

- Poor representation of some cancer types/subtypes
- Lack of patient and clinical outcome data, model history
- Lack of comparison to normal reference sample and/or directly compared to primary tumor
- Insufficient to capture the genetic diversity of cancer
- Existing lines may not be biologically/genetically representative of *in vivo* tumor

HCMI approach and core principles

- Models as a "community resource"
- Awareness of IP issues
- Permissive informed consent language permitting broad use
- Global distribution to ensure wide availability
- Open protocols

Diversity of models from the HCMI

- Glioblastoma
- Gastric adenocarcinoma
- Melanoma
- Lung sarcoma
- Wilms Tumor
- Brain metastases
- Chordoma
- Esophageal carcinoma
- Neuroblastoma
- Ewing sarcoma

- Renal medullary carcinoma
- Spindle cell sarcoma
- Osteosarcoma
- Kidney renal clear cell carcinoma
- Rhabdomyosarcoma
- Pancreatic adenocarcinoma
- Mammary triple negative ER+
- Pancreatic adenosquamous carcinoma
- Lung carcinoid

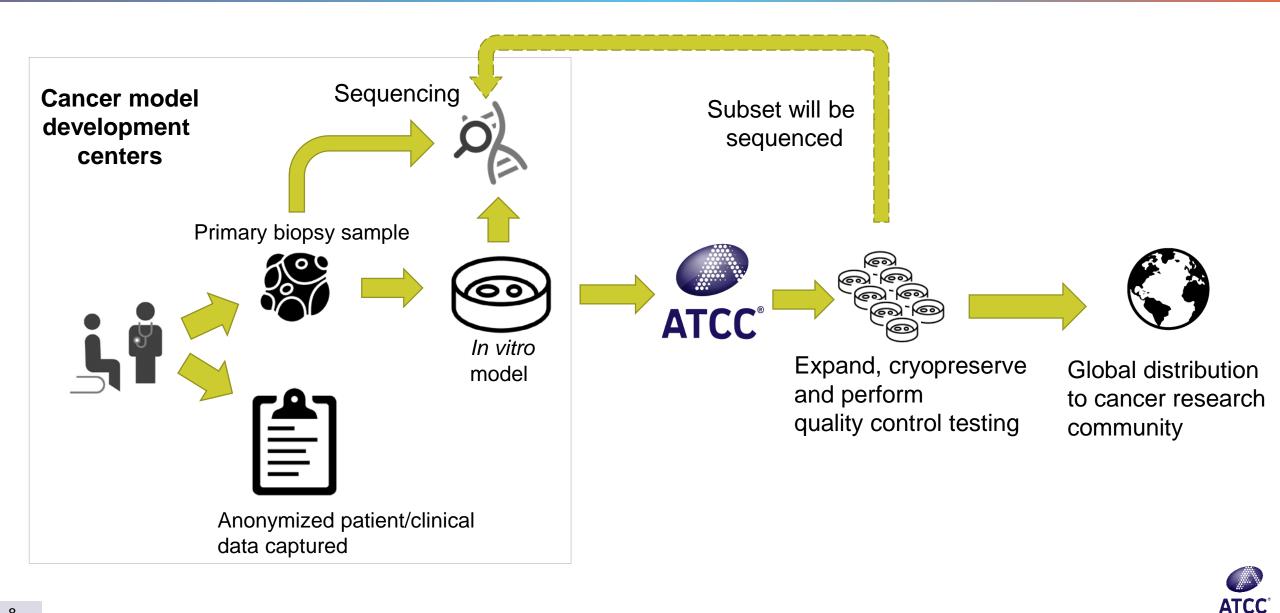
- Primary pancreatic ductal carcinoma
- Colorectal cancer
- Cholangiocarcinoma
- BRCA mutant
- Barrett's esophagus
- Esophageal adenocarcinoma
- Lung adenocarcinoma
- Desmoid Tumor
- Lung Squamous cell carcinoma

Overview of HCMI and ATCC

Founders

- National Cancer Institute
- Cancer Research UK
- Hubrect Organoid Technology Foundation
- Wellcome Sanger Institute

Model Development


- Broad Institute
- Cold Spring Harbor Laboratory
- Wellcome Sanger Institute
- Hubert Organoid Technology Foundation
- University of Verona
- Hubrecht Institute
- Stanford University
- Weill Cornell Medical College

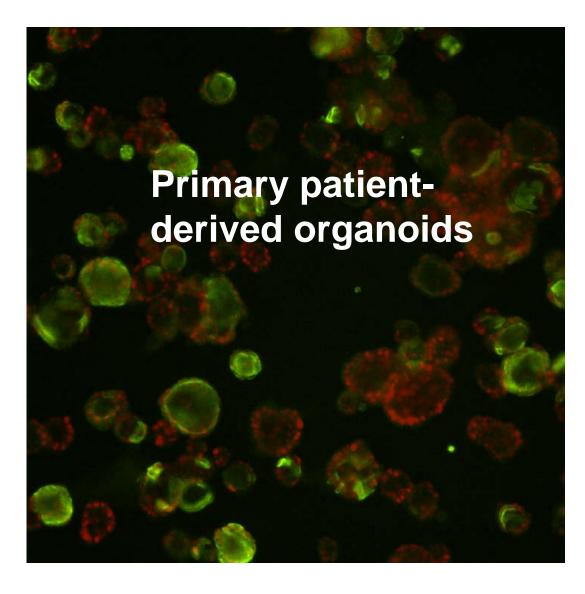
Distribution

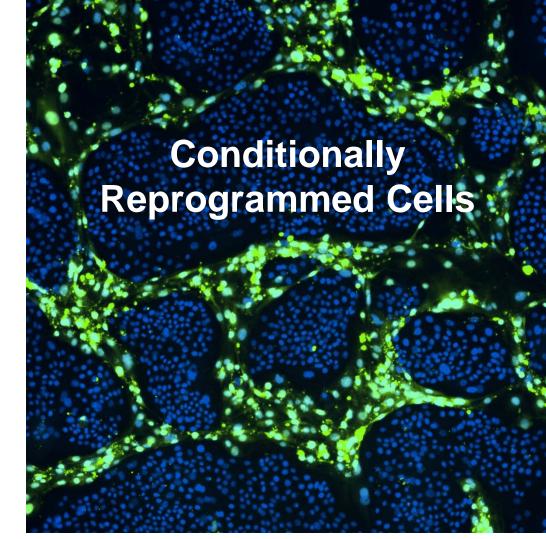
Generation and distribution of HCMI models

Characterization of models

Molecular

- 15X WGS of model, primary tumor, and normal tissue
- 150X WXS of model, primary tumor, and normal tissue
- RNA-seq of model and primary tumor


Clinical


- Disease diagnosis
- Patient demographics
- Treatment and outcomes

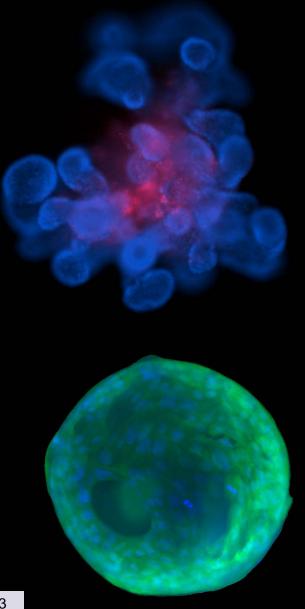
Advanced culture technologies

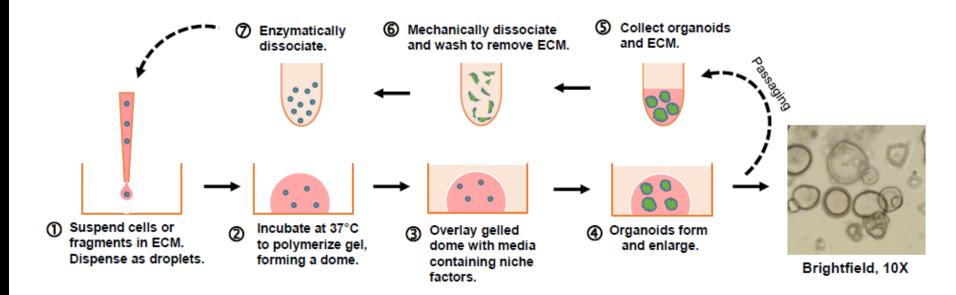


Shared features of advanced culture methods

Permits growth and expansion Limited starting material required Genetically stable

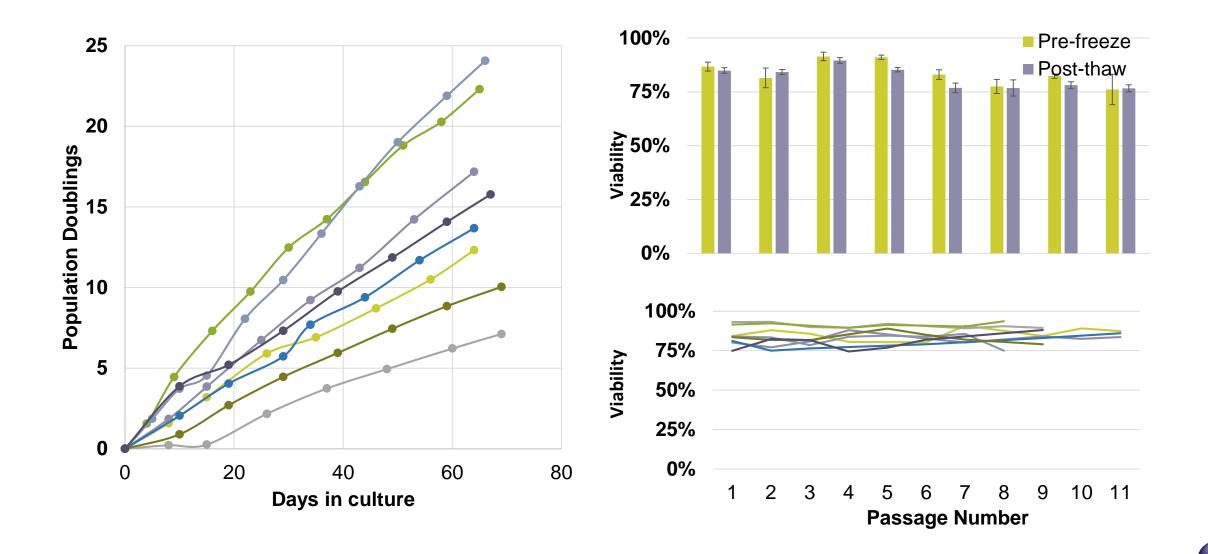
Maintain inRelatively highvivo phenotypesuccess rate




Primary tissue derived organoids

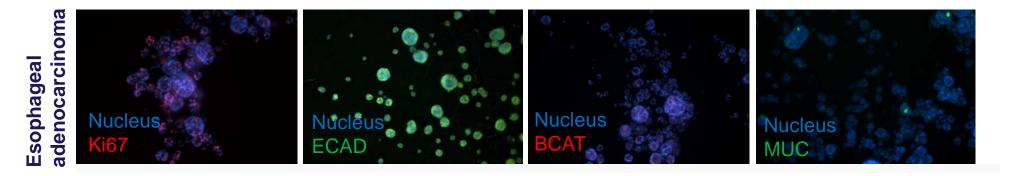
Organoid technology

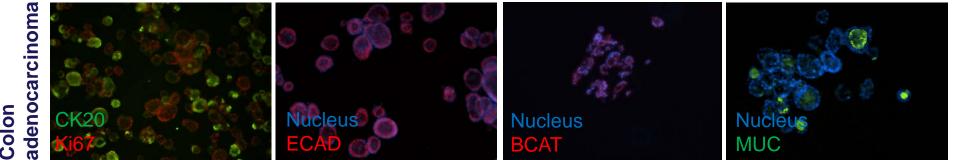
Embedded three-dimensional culture technique that utilizes model-specific growth media formulations in combination with undefined extracellular matrix

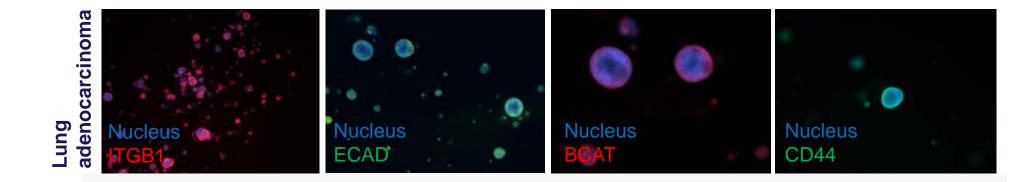


https://currentprotocols.onlinelibrary.wiley.com/doi/epdf/10.1002/cpcb.66

Primary tissue organoids compared with other models


Primary tissue- derived organoids	iPSC-derived organoids	Cancer cell line- derived spheroids
Yes	No	No
Yes	No	No
Yes	No	No
Yes	Yes	No
Yes	Yes	No
Yes	Yes	No
No	Yes	No
	derived organoidsYesYesYesYesYesYesYes	derived organoidsorganoidsYesNoYesNoYesNoYesYesYesYesYesYesYesYes


Organoids expansion, cryopreservation, and recovery



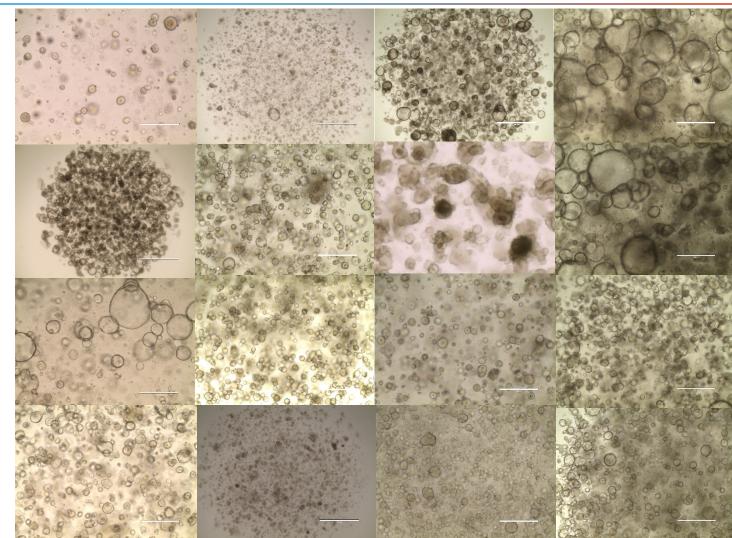
ATCC°

Organoids are amenable to standard lab assays

ATCC°

Colon

16


HCMI organoid models

Types

- Adenocarcinoma
- Carcinoma
- Primary
- Recurrent
- Metastatic
- Pre-malignant

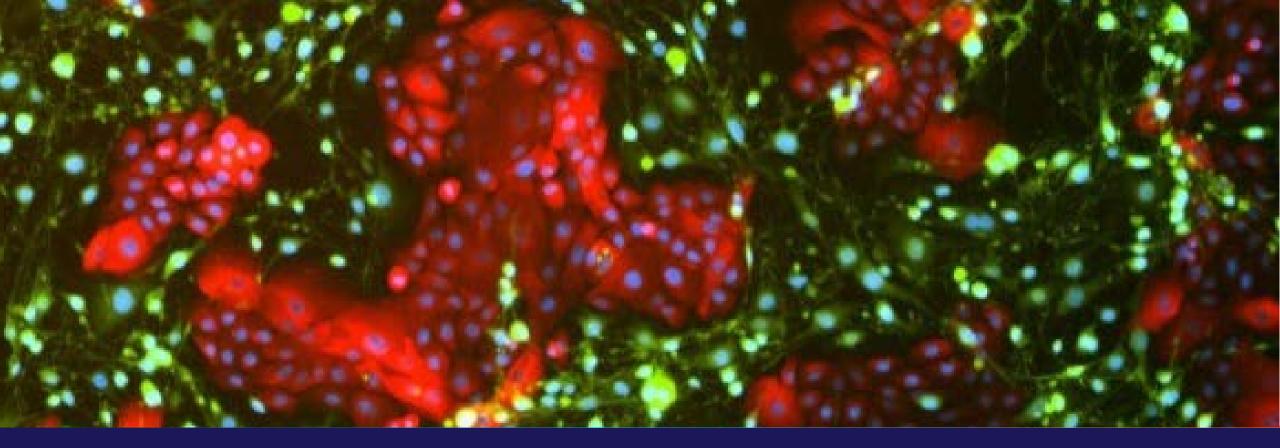
Tissues

- Lung
- Colon
- Rectum
- Mammary
- Esophagus
- Pancreas
- Prostate
- Liver
- Ovary
- Stomach

16 unique models from various tissue

Not a comprehensive list

Organoid culture guide



UNIT 🔂 Free Access

Initiation, Expansion, and Cryopreservation of Human Primary Tissue-Derived Normal and Diseased Organoids in Embedded Three-Dimensional Culture

https://currentprotocols.onlinelibrary.wiley.com/doi/epdf/10.1002/cpcb.66

Conditionally reprogrammed cells

Conditionally Reprogrammed Cells (CRC) Technology

ROCK Inhibitor and Feeder Cells Induce the Conditional Reprogramming of Epithelial Cells

Xuefeng Liu,* Virginie Ory,[†] Sandra Chapman,[‡] Hang Yuan,* Chris Albanese,*[†] Bhaskar Kallakury,* Olga A. Timofeeva,[†] Caitlin Nealon,* Aleksandra Dakic,* Vera Simic,* Bassem R. Haddad,[†] Johng S. Rhim,[§] Anatoly Dritschilo,[†] Anna Riegel,[†] Alison McBride,[‡] and Richard Schlegel* CRC method allows for the genetic manipulation of epithefial cells *ex vivo* and their subsequent evaluation *in vivo* in the same host. (*Am J Patbol 2012, 180*: 599–607; DOI: 10.1016/j.aipatb.2011.10.036)

The unlimited propagation of adult mammalian, nonkeratinocyte epithelial cells offers exciting opportunities for

Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens

Xuefeng Liu^{1,2,8}, Ewa Krawczyk^{1,2,8}, Frank A Suprynowicz^{1,2}, Nancy Palechor-Ceron^{1,2}, Hang Yuan^{1,2}, Aleksandra Dakic^{1,2}, Vera Simic^{1,2}, Yun-Ling Zheng³, Praathibha Sripadhan^{1,2}, Chen Chen^{1,2}, Jie Lu^{1,2}, Tung-Wei Hou^{1,2}, Sujata Choudhury^{1,2}, Bhaskar Kallakury^{1,2}, Dean Tang⁴, Thomas Darling⁵, Rajesh Thangapazham⁵, Olga Timofeeva^{3,6}, Anatoly Dritschilo⁶, Scott H Randell⁷, Christopher Albanese^{1–3}, Seema Agarwal^{1,2} & Richard Schlegel^{1,2}

¹Department of Pathology, Georgetown University Medical Center, Washington, DC, USA. ²Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA. ⁴Department of Epigenetics and Molecular Carcinogenesis, University of Exas MD Anderson Cancer Center, Smithville, Texas, USA. ⁴Department of Epigenetics and Molecular Carcinogenesis, University of Exas MD Anderson Cancer Center, Smithville, Texas, USA. ⁴Department of Dermatology, Uniormed Services University of the Hahlh Sciences, Bethesda, Maryland, USA. ⁴Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC, USA. ⁴Department of Cell Biology and Physiology, The University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA. ⁴These authors contributed equally to this work. Correspondence should be addressed to XL, (victure, Jui@georgetown.edu) or SL, (vichard.schlegel@georgetown.edu).

Published online 26 January 2017; doi:10.1038/nprot.2016.174

RESEARCH ARTICLES

CANCER THERAPY

The NEW ENGLAND JOURNAL of MEDICINE

BRIEF REPORT

Use of Reprogrammed Cells to Identify Therapy for Respiratory Papillomatosis

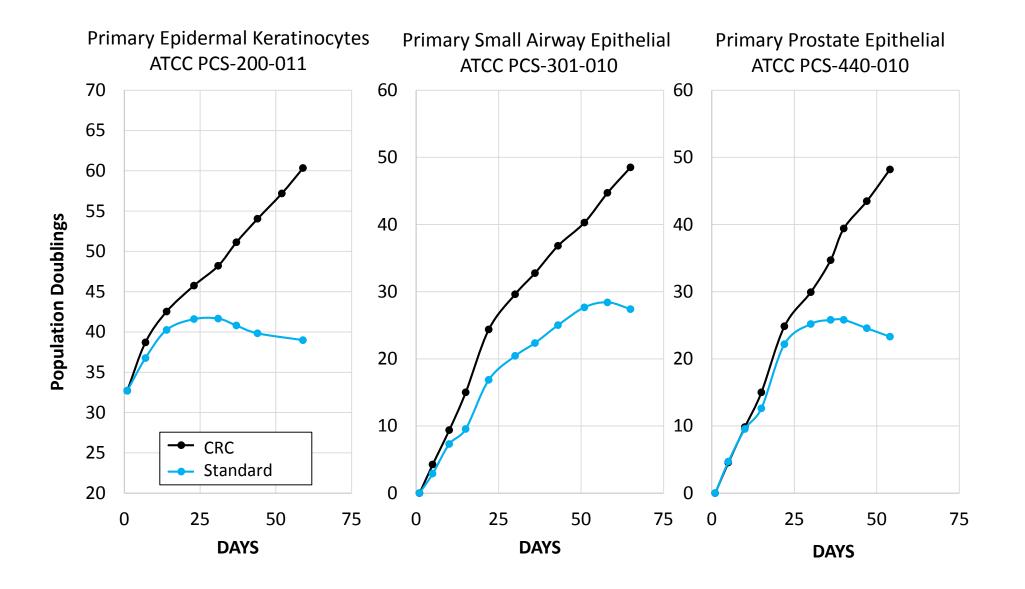
Hang Yuan, Ph.D., Scott Myers, M.D., Jingang Wang, Ph.D., Dan Zhou, M.S., Jennifer A. Woo, M.S., Bhaskar Kallakury, M.D., Andrew Ju, M.D.,
Michael Bazylewicz, M.D., Yvonne M. Carter, M.D., Christopher Albanese, Ph.D., Nazaneen Grant, M.D., Aziza Shad, M.D., Anatoly Dritschilo, M.D., Xuefeng Liu, M.D., and Richard Schlegel, M.D., Ph.D. www.impactjournals.com/oncotarget/

Oncotarget, Advance Publications 2016

Conditionally reprogrammed normal and primary tumor prostate epithelial cells: a novel patient-derived cell model for studies of human prostate cancer

Olga A. Timofeeva^{1,2}, Nancy Palechor-Ceron³, Guanglei Li⁴, Hang Yuan³, Ewa Krawczyk³, Xiaogang Zhong⁵, Geng Liu⁴, Geeta Upadhyay¹, Aleksandra Dakic³, Songtao Yu³, Shuang Fang³, Sujata Choudhury³, Xueping Zhang¹, Andrew Ju⁶, Myeong-Seon Lee⁷, Han C. Dan⁸, Youngmi Ji⁹, Yong Hou⁴, Yun-Ling Zheng¹, Chris Albanese^{1,3}, Johng Rhim⁹, Richard Schlegel³, Anatoly Dritschilo^{1,6}, Xuefeng Liu³

Patient-derived models of acquired resistance can identify effective drug combinations for cancer

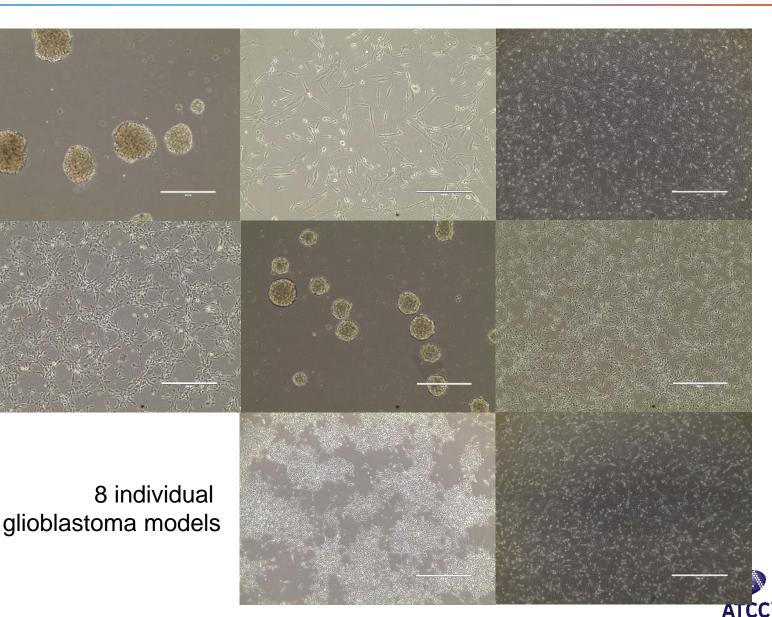

PROTOCOL

Adam S. Crystal,¹ Alice T. Shaw,¹ Lecia V. Sequist,¹ Luc Friboulet,¹ Matthew J. Niederst,¹ Elizabeth L. Lockerman,¹ Rosa L. Frias,¹ Justin F. Gainor,¹ Arnaud Amzallag,¹ Patricia Greninger,¹ Dana Lee,¹ Anuj Kalsy,¹ Maria Gomez-Caraballo,¹ Leila Elamine,¹ Emily Howe,¹ Wooyoung Hur,^{3,4} Eugene Lifshits,¹ Hayley E. Robinson,² Ryohei Katayama,¹ Anthony C. Faber,¹ Mark M. Awad,¹ Sridhar Ramaswamy,¹ Mari Mino-Kenudson,² A. John Iafrate,² Cyril H. Benes,^{1*} Jeffrey A. Engelman^{1*}

20

CRC culture can prevent senescence of primary cells

HCMI CRC and other non-organoid models


Includes CRC, various other 2D and 3D models types

Tissues

- Adrenal gland
- Soft tissue/bone
- Head and neck
- Brain
- Kidney

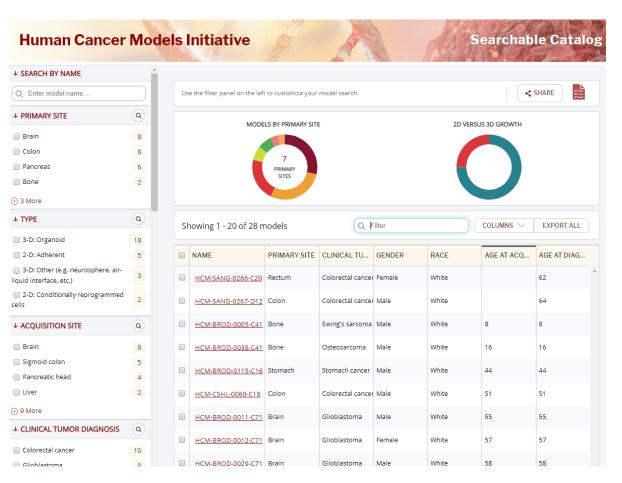
Types

- Neuroblastoma
- Glioblastoma
- Ewing Sarcoma
- Rhabdomyosarcoma
- Wilms Tumor

Not a comprehensive list

Culture conditions for currently released HCMI models

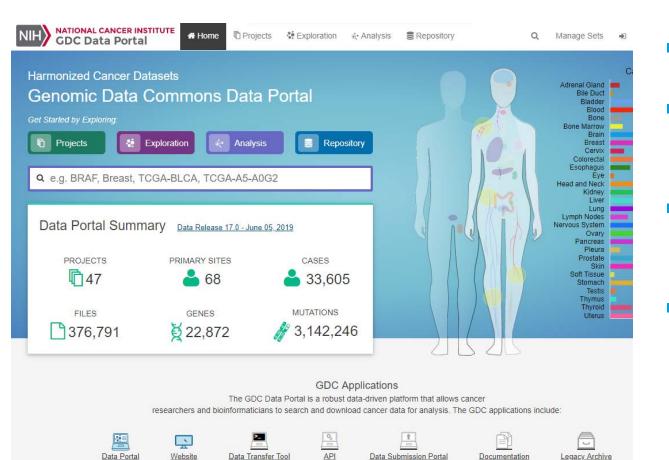
Media/ Technology	Off-the-shelf growth media	Growth properties	Tissue type(s)	Serum- free/defined	ECM or special surface required?
Organoid*	No	3D embedded	Multiple	No	Yes
Conditional Reprogramming	Yes	2D adherent	Multiple	No	No
SmGM-2	Yes	2D adherent and suspension	Bone	No	No
RETM	Yes	2D adherent	Brain	No	No
Neurocult NS-A	Yes	2D adherent and suspension	Brain	Yes	Sometimes



ATCC [®] Credible leads to I	ncredible™	Login Create a Profile		items) USA + 1.800.638.6597 Keyword or Catalog
			Gearch by	
ducts Services Standards	Resources Supp	ort About		
HUMAN CANCER	MODELS INIT	CATIVE		HCMI RESOURCES Posters Brochures
Next-generation Cancer Mod	lels		AT	Culture Guides Application Notes
As part of our pledge to elevate biological n to offer scientists a wide variety of next-gen ATCC is committed to making available a common as well as rare and understudied tools to study cancer, identify and target no	revention 2D and 3D patient-derive rowing collection of models gene examples of cancer from numero	d <i>in vitro</i> cancer models, including rated by the HCMI, which will inclu us tissues. These HCMI models ar	organoids. de both	Webinars Protocols
Cancer Models Based on Physiol	ogical System:			
Digestive System	>	Nervous System >		Credible Models Incredible Outcomes Learn more
Respiratory System	n > Mu	sculo-skeletal System		Credible Collaboration Incredible
Reproductive System	Coming Soon	Integumentary System		Insights Learn more
Excretory System		Circulatory System	8	

www.atcc.org/HCMI

- View all models available or grouped by tissue
- Model specific information such as culture images, seeding densities, media change frequencies, etc.
- Individual model product pages include detailed culture protocols
 - Complete media formulation
 - Thawing/subculturing/freezing guides
- Model pages link to other resource pages that host clinical and sequencing data
- Frequently asked questions



hcmi-searchable-catalog.nci.nih.gov

- NCI managed website
- Integrates clinical, model, and genomic information.
- Search for models of interest using various filters
 - Primary tumor site/acquisition site
 - Model type
 - Tumor diagnosis/stage/grade/histological type
 - -Gender/age/ethnicity
 - -Etc.
- Links out to clinical and genomic data, ATCC model product page.

NCI managed website

- Search and download cancer related datasets for analysis
- Navigate to the "HCMI-CMDC" project for HCMI specific datasets
- Download WGS/WXS/RNAseq data
 - Aligned reads, gene expression, SNVs

portal.gdc.cancer.gov

e-Newsletter

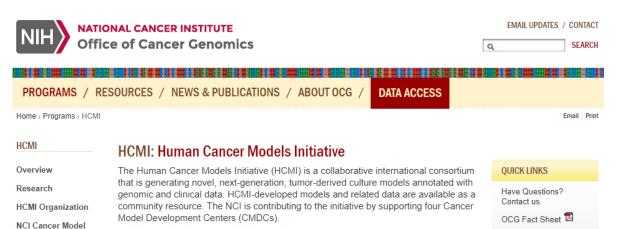
RSS Feeds

HP

OCG

View In the News Page

EMAIL UPDATES SIGN-


Get email updates from

HCMI RESOURCES

HCMI Case Report Forms (CRFs)

HCMI Searchable

Catalog User Guide

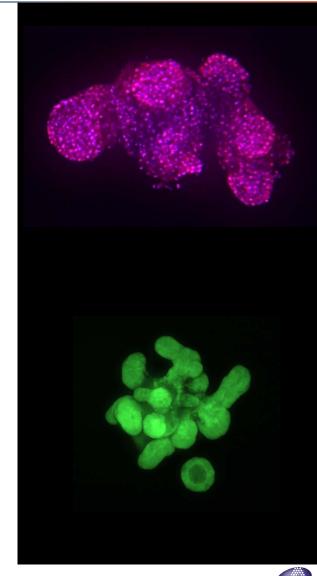
NEWS & PUBLICATIONS

July 11, 2016 Office of Cancer Genomics launches new program The NCI <u>Office of Cancer Genomics</u>, along with <u>Cancer Research</u>

NCI managed website

- Background information on the HCMI program and organization
- Useful documents
 - Case Report forms for patient enrollment and follow-up
 - -HCMI Searchable catalog user guide
 - -Informed consent template

Development


HCMI Publication

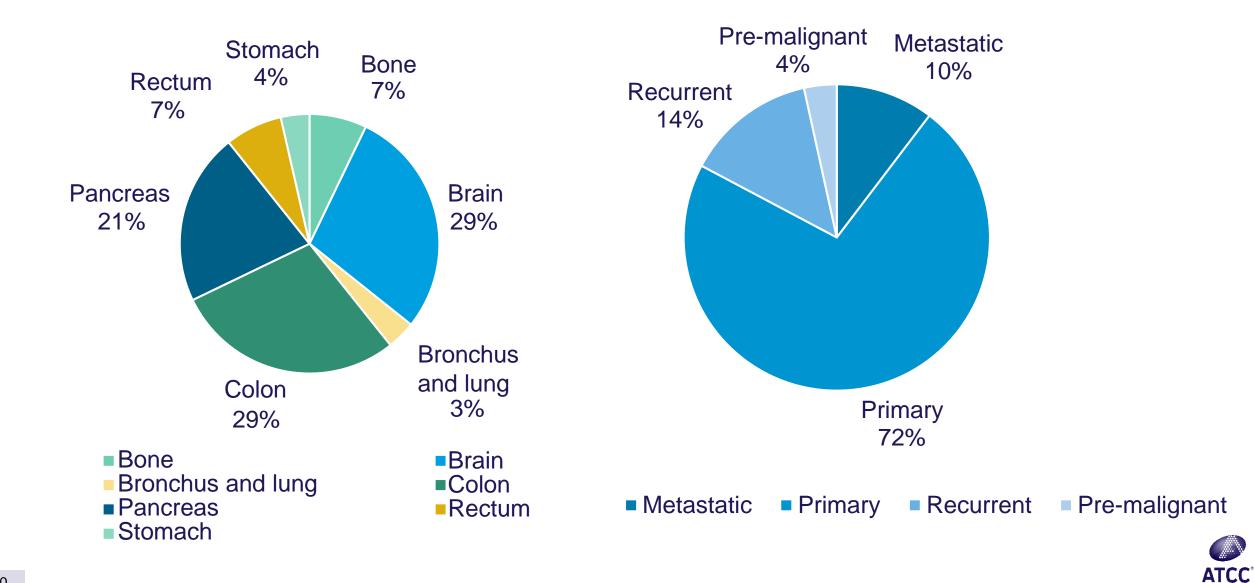
Resources

Guidelines

28 models currently available from ATCC

- Additional models will be made available on a rolling basis, expect releases every 1-2 months.
- Pipeline includes mammary carcinoma organoids, primary and metastatic esophageal adenocarcinoma organoids, additional colon, pancreas and glioblastoma models.

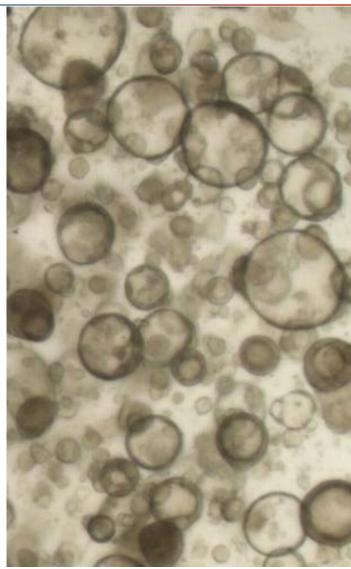
ATCC HCMI model distribution material


- Target ≥1x10⁶ viable cells per vial
- Product documentation includes
 - Recommended growth medium
 - Recommended culture maintenance parameters

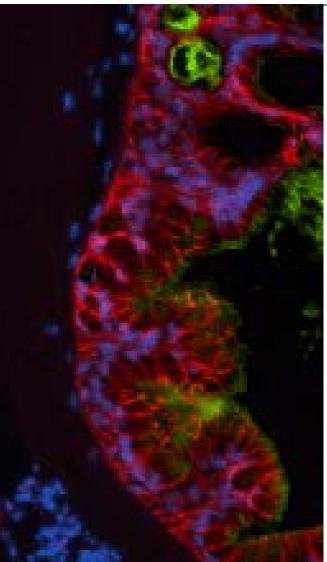
- QC
 - Post-thaw cell count and viability
 - -Mycoplasma testing
 - Sterility testing (bacteria, fungi and yeast)
 - -Species determination
 - -STR fingerprinting
 - -Human pathogenic virus testing (HIV, HBV, EBV, CMV, WNV)

Models currently available

Models currently available


Part No.	Description	Туре			
PDM-135	Metastatic Adenocarcinoma of stomach	Organoid			
PDM-1	Primary Adenocarcinoma of colon	Organoid	Part No.	Description	Туре
PDM-2	Primary Adenocarcinoma of colon	Organoid	PDM-3	Primary Adenocarcinoma of lung	Organoid
PDM-4	Primary Adenocarcinoma of colon	Organoid	PDM-127	Metastatic Ewing sarcoma	2D adhere
PDM-5	Primary Adenocarcinoma of colon	Organoid	PDM-114	Primary Osteosarcoma	2D adhere
PDM-6	Primary Adenocarcinoma of colon	Organoid	PDM-16	Primary Glioblastoma	2D adhere
PDM-7	Primary Adenocarcinoma of colon	Organoid	PDM-17	Primary Glioblastoma	2D adhere
PDM-8	Primary Adenocarcinoma of colon	Organoid	PDM-18	Primary Glioblastoma	Suspensi
PDM-44	Pre-malignant Adenoma of colon	Organoid	PDM-20	Primary Glioblastoma	2D adher
PDM-9	Metastatic Adenocarcinoma of rectum	Organoid	PDM-19	Recurrent Glioblastoma	2D adhere
PDM-43	Primary Adenocarcinoma of rectum	Organoid	PDM-21	Recurrent Glioblastoma	2D adhere
PDM-106	Metastatic Adenocarcinoma of pancreas	Organoid	PDM-22	Recurrent Glioblastoma	Suspensi
PDM-36	Primary Adenocarcinoma of pancreas	Organoid	PDM-23	Recurrent Glioblastoma	2D adher
PDM-38	Primary Adenocarcinoma of pancreas	Organoid			
PDM-39	Primary Adenocarcinoma of pancreas	Organoid			
PDM-40	Primary Adenocarcinoma of pancreas	Organoid			
PDM-41	Primary Adenocarcinoma of pancreas	Organoid			

www.atcc.org/HCMI


 Sign up on the ATCC HCMI website to join the early adopter program and gain access to models prior to release.

 Sign up for the ATCC mailing list to be notified of new HCMI model releases.

Summary

 HCMI models are primary patient-derived models from a variety of tissues and cancer types that are paired with patient clinical and molecular characterization via WGS/WXS/RNA-Seq.

• 28 models from a variety of tissues/cancer types are currently available and new models will be continually released in the coming months.

 ATCC is excited to support the HCMI and their goal of developing and distributing next-generation cancer models.

Thank you for joining today!

- Register for more ATCC webinars at <u>www.atcc.org/webinars</u>
- June 27 | 12:00 PM ET
 iPSC-derived Primary Cells: Expand Your Cell-based Assays With an Unlimited, Biologically Relevant Resource
 Yalin Firinci, M.B.A.
 Product Line Business Specialist, ATCC

Please email additional questions to: tech@atcc.org

© American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise.