

iPSC-derived primary cells: Expand your cell-based assays with an unlimited, biologically relevant source

Yalin Firinci, M.B.A.
Product Line Business Specialist, ATCC

Credible Leads to Incredible™

ATCC today

- Founded in 1925, ATCC is a non-profit organization with HQ in Manassas, VA and an R&D & Services center in Gaithersburg, MD
- World wide brand name and quality recognition
- World's premiere biological materials resource and standards development organization
 - 4,000 cell lines
 - 70,000 microbes
- ATCC collaborates with and supports the scientific community with industry-standard and innovative biological solutions
 - Growing portfolio of products and services
 - Sales and distribution in 140 countries, 12 International distributors
- Talented team of 475+ employees; > one third with advanced degrees
- Multiple accreditations including ISO 9001 and ISO 13485

Agenda

- iPSC-derived Primary Cells Background
- iPSC-derived Primary Cells Portfolio
 - iPSC-derived Mesenchymal Stem Cells (ATCC® ACS-7010™)
 - iPSC-derived CD34+ Cells (ATCC® ACS-7020™)
 - iPSC-derived Monocytes (ATCC® ACS-7030™)
- Summary

iPSC-derived Primary Cells Background Information

What are iPSCs?

Figure adapted from Kaebisch C, et al., 2015.

1. Takahashi K. et al., 2006. 2. Yu J. et al., 2007.

iPCS-derived Primary Cells

- ATCC iPSCs were used as feedstock for this project
- The iPSCs were terminally differentiated to the desired cell type by incubation in proprietary media formulations
- An unlimited, clonal source of cells needed for research or therapeutic purposes was developed using this method
- Scope: ATCC iPSCs were the source for three types of differentiated cells:
 - Mesenchymal Stem Cells (MSCs)
 - CD34+ Progenitors
 - Monocytes.

ATCC classic and advanced cell models

- ATCC is a complete solution supplier
- From basic research through discovery and development to product testing
 - Continuous cell lines
 - Primary cells
 - hTERT immortalized primary cells
 - iPSC-derived primary cells
- Portfolio features
 - Reliability
 - Fully characterized cells
 - Optimized growth protocols

Pros and cons of different cell models

	Primary Cells	hTERT Immortalized	Continuous Cell Lines	iPSC-derived
Mimic <i>in vivo</i> tissue type	++++	+++	+	+++
Genotypic stability	Diploid	Diploid/ Near Diploid	Aneuploid	Diploid
Proliferative capacity	+	+++	+++	+
Supply	+	+++	+++	+++
Inter-experimental reproducibility	+	+++	+++	+++
Cost	+++	+++	+	++
Ease-of-use	+	++	+++	++
Predictability in toxicological studies	+++	+++	+	+++

ATCC Portfolio

Cell Type	ATCC® No.	Product Type	Tissue of Origin/ Parental Line (ATCC® No.)
	PCS-500-011™	Primary	Adipose
Mesenchymal Stem Cells	SCRC-4000™	hTERT immortalized	Adipose
	ACS-7010 [™]	iPSC derived	Bone marrow BYS0112 (ACS-1026™)
0004.0	PCS-800-012 [™]	Primary	Bone Marrow
CD34+ Progenitor Cells	ACS-7020 [™]	iPSC derived	Bone marrow – CD34+ BXS0117 (ACS-1031™)
•	PCS-800-011 [™]	Primary	Peripheral Blood
Monocytes	ACS-7030™	iPSC-derived	Foreskin fibroblast DYS0100 (ACS-1019™)

ATCC's iPSC-derived Cells Portfolio

iPSC-derived Mesenchymal Stem Cells (ATCC® ACS-7010™)

- High purity
 - CD29, CD44, CD73, CD90, CD105, and CD166>95%;
 - CD14, CD19, CD31, CD34, and CD45 <5%.
 - Tra-I-60+ < 5%
- High post-thaw viability (>90%)
- Available in large quantity from a single source
- High osteocyte, adipocyte and chondrocyte differentiation potential
- Serum free freezing medium

Flow cytometry of surface markers of iPSC-derived MSC

Positive marker expression

Flow cytometry of surface markers of iPSC-derived MSC

Negative marker expression

Osteocyte differentiation potential

Chondrocyte differentiation potential

Adipocyte differentiation potential

iPSC-derived MSCs immunosuppress activated PBMCs

iPSC-derived CD34+ progenitor cells (ATCC® ACS-7020™)

- High purity
 - CD34+>90%
 - CD45+< 80%
 - Tra-I-60+ < 5%
- High post-thaw viability (>92%)
- Suspension cells
- Available in large quantity from a single source
- High erythroid, myeloid, and megakaryocyte differentiation potential
- Serum free freezing medium

Marker analysis in iPSC-derived CD34+ cells

Blood lineage differentiation potential

iPSC-derived Monocytes (ATCC® ACS-7030™)

- High purity
 - -CD14+ > 90%
 - Tra-I-60+ < 5%
- High post-thaw viability (>95%)
- Suspension cells
- Available in large quantity from a single source
- High macrophage and dendritic cell differentiation potential
- High cytokine activation
- High phagocytic potential for macrophages
- Serum free freezing medium

Marker analysis of iPSC-derived Monocytes

Macrophage differentiation potential

Dendritic cell differentiation potential

Monocyte activation assays

Summary

- ATCC developed proprietary methods for the differentiation of CD34+ cells, Monocytes, and MSCs from normal human iPSCs
- Different ATCC iPSC lines have varied efficiencies for differentiation into distinct lineages
- Differentiated iPSC-derived primary cells provide:
 - An unlimited source of cells
 - Interexperimental reproducibility
 - High biological relevance They exhibit primary cell functionality and genetic stability
- iPSC-derived CD34+ cells can differentiate to all blood lineage cells
- iPSC-derived Monocytes can differentiate to functionally active macrophages and dendritic cells
 - Activated cells can be utilized for developing a MAT assay
- iPSC-derived MSCs can:
 - Differentiate to osteocytes, adipocytes, and chondrocytes
 - Display immunosuppressive properties
- You can order these products at <u>www.atcc.org/differentiatediPSCs</u>

Thank You

Questions?

Thank you for joining today!

- Register for more ATCC webinars at www.atcc.org/webinars
- Go to www.atcc.org/differentiatediPSCs
- Poster Presentation: ISSCR 2019
 Production of assay-ready iPSC-derived CD34+ cells, monocytes, and mesenchymal stem cells

Presented by Sheela Jacob, Ph.D. June 28 | 7:00 PM ET Poster Board # F-2052

