

Neural Progenitor Cells: Better Biological Models of Neurodegenerative Disease

Brian Shapiro, Ph.D. *Technical Writer*, ATCC

Credible Leads to Incredible™

ATCC – Credible leads to Incredible

- ATCC has provided credible biomaterials for over 90 years
- We continue to cultivate collaboration
 - Among scientists across disciplines
 - Essential for accelerating innovative research
 - Leading to incredible, high-impact results.
- Our Cultivating Collaboration pledge: We bring scientists together to discuss
 - Breakthroughs in the state of science
 - Multidisciplinary approaches to key areas of research
 - Breaking the silos that impede research
- Our partnership with you, the scientific community, allows us all to reach the incredible

ATCC°

Agenda

Neural Progenitor Cells (NPCs) and Media

- Background information
- Differentiation potential of ATCC NPCs
- Toxicological studies
- Summary

Challenges associated with current models of the nervous system

- Primary cells from animals (mouse and rat neurons)
 Not predictive
 - Donor variation
- Continuous cell lines (originally isolated from tumors)
 Not normal
 - -Not predictive
- Induced pluripotent stem cells (iPSCs; commercial or selfmade)
 - -Time and labor intensive
 - -Often not validated for neural development

What is neurobiologists need in a better biological model

Advanced, biologically relevant models

- A true disease model
- Validated neural functioning
- Predictive for screening applications

Neural progenitor cells - Neuronal differentiation

ATCC[®]

NPCs: An advanced model of the nervous system

A better biological model:

- Human models with no donor variation
- Live imaging is possible
- Cells exhibit full differentiation spectrum
- Complete system of cells and media is available

More meaningful results:

- More biologically relevant results/more predictive system
- Parkinson's NPCs better replicate the disease state in vitro
- Markers allow for easy endpoint readout
- Can differentiate to neuronal and glial cells
- Easy to use and saves time

ATCC[®] NPC offerings

ATCC [®] No.	Designation
<u>ACS-3003</u> ™	NPC Growth Kit – add to DMEM/F12
<u>ACS-3004</u> ™	NPC Dopaminergic Differentiation Kit – add to DMEM/F12
<u>ACS-5001</u> ™	NPCs derived from ATCC-DYS0530 Parkinson's Disease (ACS-1013) New!
<u>ACS-5003</u> ™	NPCs derived from ATCC-BXS0117 (ACS-1031)
<u>ACS-5004</u> ™	NPCs derived from ATCC-BYS0112 (ACS-1026)
<u>ACS-5005</u> ™	Neural Progenitor Cells derived from XCL-1 DCX-GFP (for late neuron differentiation)
<u>ACS-5006</u> ™	Neural Progenitor Cells derived from XCL-1 GFAP-Nanoluc®-Halotag® (for astrocyte differentiation)
<u>ACS-5007</u> ™	Neural Progenitor Cells derived from XCL-1 MAP2-Nanoluc®-Halotag® (for early neuron differentiation)
<u>ACS-2103F</u> ™	Screening Fee – For Profit

 $ATCC^{\$} ACS-1026 - iPSC$ derived from bone marrow CD34+ cell from Caucasian male $ATCC^{\$} ACS-1031 - iPSC$ derived from bone marrow CD34+ cell from Asian female

Reporter lines from iPSC derived from cord blood CD34+ from a Caucasian male (XL-1 iPSCs from NIH)

QC testing of ATCC® NPCs

- Post-thaw cell viability: >80%
- Post-thaw viable cell number: >1x10⁶ cells/vial
- Longevity: >15 PDLs or 5 passages
- NPC marker expression: Nestin⁺, Pax-6⁺, and Tra-I-60⁻
- Differentiation potential:
 - -Tuj1⁺ early neurons
 - -TH⁺ dopaminergic neurons
- Identity: STR profile matching parental iPSC line
- Sterility, mycoplasma, and viral panel testing: None detected

Agenda

Neural Progenitor Cells (NPCs) and Media

- Background information
- Differentiation potential of ATCC NPCs
- Toxicological studies
- Summary

ATCC normal NPCs express NPC markers but not iPSC markers

ATCC Parkinson's NPCs express NPC markers but <u>not</u> iPSC markers

Dopaminergic neuron differentiation of NPCs

TuJ1

TH/DAPI

Dopaminergic neuron differentiation of Parkinson's disease NPCs

Astrocyte and oligodendrocyte differentiation

Astrocyte differentiation

Oligodendrocyte differentiation

ACS-5003

Dopaminergic neuron differentiation of NPC reporter lines

Expression of the luciferase reporter during dopaminergic neuron or astrocyte differentiation

Luciferase secretion during dopaminergic neuron differentiation of NanoLuc[®]-HaloTag[®] NPCs

Luciferase secretion during astrocyte differentiation of GFAP-NanoLuc[®]-HaloTag[®] NPCs

Expression of the GFP or HaloTag[®] reporter during dopaminergic neuron or astrocyte differentiation

Expression of genes associated with the differentiation of NPCs

TaqMan[®] primers were used to identify the presence of other types of neurons during dopaminergic neuron differentiation using ATCC[®] ACS-3004[™] media

- Dopaminergic neurons: TH, NURR1, VMAT2, AADC
- Glutamatergic neurons: GLS2, vGLUT1,vGLUT2
- GABAergic neurons: GABA (GABRB3)
- Motor neurons: EN1, LIM3, and Hb9
- Cholinergic neurons: ChAT

Early and dopaminergic neuron gene expression

Upregulation of early and dopaminergic neuron genes in ACS-5001, ACS-5003, and ACS-5007 NPCs during dopaminergic neuron differentiation

Expression of early neuron gene MAP2

Expression of dopaminergic neuron gene TuJ1

Dopaminergic Differentiation

Expression of dopaminergic neuron gene TH

Expression of dopaminergic neuron gene NURR1

Expression of VMAT2

Expression of DAT

Expression of AADC

Gene expression other neuronal subtypes

ATCC [®] No.	Gutamatergic			GABAergic	Motor			Cholinergic
	GLS2	vGLUT1	vGLUT2	GABRB3	EN1	LIM3	Hb9	ChAT
ACS-5001	+	++	+++	++	++	++	++	+
ACS-5003	+++	+++	+++	++	++	++	+++	-
ACS-5007	+	++	+++	++	-	-	-	++

- = no significant increase in expression after 3 weeks

+ = increased expression within 3 weeks, fold over control

Protein expression

Confirmation of protein expression in ACS-5007 NPCs during dopaminergic differentiation by immunocytochemistry

NPC-derived neurons

Confirmation of dopaminergic neuronal-specific protein expression during differentiation by immunocytochemistry

Agenda

Neural Progenitor Cells (NPCs) and Media

- Background information
- Differentiation potential of ATCC NPCs
- Toxicological studies
- Summary

Neurotoxicity studies – undifferentiated NPCs

Neurotoxicity studies – undifferentiated NPCs

Dose-response curves for cell viability of ACS-5003 ACS-5007 NPCs treated with paclitaxel for two days

Neurotoxicity studies – NPCs-derived neurons

ACS-5007 NPCs-derived neurons

High content imaging analysis of neurotoxicity in normal NPCderived neurons

Overall neurotoxicity studies

Toxin	ACS-5001 NPCs	ACS-5003 NPCs	NPC-derived neurons	
Amiodarone	Toxic	Toxic	Toxic	
Chlorhexidine	Toxic	Toxic	Toxic	
Cisplatin	Resistant	Weakly toxic	Resistant	
Piperine	Resistant	Resistant	Resistant	
Vincristine	Toxic	Toxic	Weakly toxic	
Hydroxyurea	Resistant	Weakly Toxic	Resistant	
Paclitaxel	Toxic	Тохіс	Resistant	

Agenda

Neural Progenitor Cells (NPCs) and Media

- Background information
- Differentiation potential of ATCC NPCs
- Toxicological studies
- Summary

NPCs – Summary

- Cells and media with easy to use protocols
 - Expansion and Differentiation Medium
- Human model with no donor variation
 - Ability to expand and bank
- Differentiation across a wide spectrum of neural and glial lineages
 - Neurons
 - Astrocytes
 - Oligodendrocytes
- Live imaging of differentiation
 - GFP expression upon neural differentiation

NPCs – Summary

- Our studies demonstrated that ATCC normal and PD NPCs have the potential to be differentiated into:
 - Dopaminergic neurons
 - GABAergic neurons
 - Glutamatergic neurons
 - Motor neurons
 - Cholinergic neurons after treatment of NPCs with ATCC dopaminergic differentiation media
- ATCC NPCs are suitable for drug screening applications

Disclaimers

© 2018 American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise. NanoLuc[®], HaloTag[®] and Promega are registered trademarks or trademarks of Promega Corporation. TaqMan[®] is a registered trademark of Roche Molecular Systems, Inc.

Cultivating collaboration to elevate biological models

Let's continue to cultivate collaboration:

- Help us elevate our Better Biological Models
- Advanced biological models enable greater
 - Specificity
 - Functionality
- Join our community of early adopters
- Our partnership with you, the scientific community, allows us all to reach the incredible

2020.atcc.org/elevating-biological-models

for more information about becoming an early adopter of NPCs

