

MIT

Buildina the Future with

Creating Synthetic Protein-Protein Interaction Networks and Implications for Endogenous Network Discovery

Deepak Mishra, Sc.D. Weiss Lab Synthetic Biology Center @ MIT

> May 17, 2018 ATCC Webinar

An NIGMS-funded National Center for Systems Biology

Developing Biological Systems with Novel Function

By engineering underlying elements and reactions, can we program the resulting behaviors of cells/tissues?

Brief History of Transcriptional Systems in Synthetic Biology

Elowitz et al, Nature (2000), Basu et al, Nature (2005); Moon et al, Nature (2012); Guye et al, NatCom(2015)

Life Is NOT Governed By Transcriptional Speeds

Protein-Protein Interactions Represent a Frontier in SynBio

Organism	Transcription Factors	Receptors, Kinases, and Phosphatases
S. cerevisiae	113 [1]	1850 ^[3]
H. sapiens	229 [2]	2211 ^[3]

Similar order of magnitude naturally but NOT in synbio

[1] Teixeira et al, NAR, 2014 [2] Breitkreutz et al, Science, 2010 [3] Papin et al, Nat. Rev. MCB 2005 [4] Lim NatRevMCB 2010

Why Build Protein-Protein Networks?

Modulate/modify existing pathways

Sophisticated cellular sensing directly coupled to actuation

Build to understand motifs

Fast networks with potentially low operating energy

Lim NatRevMCB 2010; Khalil & Collins NatRevGen 2010

Strategies for implementing protein interactions in SynBio

Park et al, Science (2003), Chen et al, NBT (2005); Dueber et al, NBT (2007); O'Shaughnessy et al, Cell (2011) Sprinzak et al, Nature (2010)

Protein networks requires rules to build protein devices

SENSE

COMPUTE

ACTUATE

Rapid Design and Assembly of Complex Networks

- Highly efficient (Recombinase cloning with selection, doubleantibiotic Gibson assembly)
- No PCR Mutation Risk
- Uses L1L2 gene plasmids available from common NIH repositories (ASU/Harvard)
- Flexible Delivery
- Easy to make network variants
- Available as SB-2000 from ATCC!

Gateway® is a registered trademark of Thermo Fisher Scientific

DNA Assembly Example

Engineering Pathway Convergence for Synthetic OR Gate

Objective: Bridge CRE1 and STAT5 to YPD1 to create OR logical gate

Conditions

Phosphorylation Activated Localization (PAL) for Synthetic NOT Gate

Objective: Bridge HOG1 and JH1 to create NOT logical gate

Testing NOT Gate

Forming a toggle network from protein-protein ORs and NOTs

Mapping a Logic Network to a Protein Network

Protein Network Operation – Two Stable States

Switching to PBS2 High Stable State

Switching to YPD1 High Stable State

Characterizing the Toggle Network

Characterizing Endogenous NOT gate

Characterizing OR gate from Engineered Signal Diversion

Computational model for toggle optimization

- Created stochastic mathematical model (~2 dozen species)
- Parameter sweep across gene expression levels and reaction rates

• Identified expression amount and relative ratios of HOG1/HOT1/STAT5 as critical for bistable behavior

Tristan Bepler

Toggle Optimization and Computational Prediction

Toggle Network Dynamic Operation with Sorbitol

Demonstrating Toggle Network Bistability

Hog1-FGFP	DAPI (nucleus)	Combined

Controlling Cellular Phenotype

Time (min)

Toggle Network Dynamic Operation with Sorbitol

Toggle Network Operation

Stochastic Ultrasensitivity

2s Sorbitol Pulse Input

2s Sorbitol Pulse Input

Stochastic Ultrasensitivity

Experimental Results

Mechanistic Simulations

Deciphering Protein Networks

Deciphering Protein Networks

Biological Function ENcoded by Connected Edges (BioFENCE)

Biological Function ENcoded by Connected Edges (BioFENCE)

A toggle may be implemented with a cycle without repeating nodes with an even, non-zero number of inhibitory nodes.

- 1. Start with a single node
- 2. Trace a looped path that starts and ends with a single node that does not repeat any node AND has an even number of inhibitory connections.

BioFENCE: Seeding and Searching

Seeded with *S. cerevisiae* KEGG 216 nodes 124 inhibitory edges 408 activation edges

Yields 109401 networks to n=9! 91/216 nodes 327/532 edges

Choosing Good Candidates using BioFENCE To Validate

Experimental Validation of BioFENCE Candidates

Synthetic and Endogenous Toggle Design Principles

Acknowledgments

Phillip Rivera

Allen Lin

Tristan Bepler

Ron, Lila, Patrick, Jingjing, Saurabh, Noah, Jon

MIT CISB Center for Integrative Synthetic Biology

An NIGMS-funded National Center for Systems Biology

Mo Khalil

Chris Voigt

Doug Lauffenburger Thank You!

Questions? <u>dmishra@mit.edu</u>

Toolkit Questions? ATCC-YTK@mit.edu