

Best of Both Worlds – hTERTimmortalized Primary Cells

Kevin Grady, B.S., *Senior Product Line Business Manager*, ATCC Chaozhong Zou, Ph.D., *Senior Scientist*, ATCC

ATCC Today

- Founded in 1925, ATCC is a non-profit organization with HQ in Manassas, VA and an R&D & Services center in Gaithersburg, MD
- World wide brand name and quality recognition
- World's premiere biological materials resource and standards development organization
 - 4,000 cell lines

ATCC'

- 70,000 microbes
- ATCC collaborates with and supports the scientific community with industry-standard and innovative biological solutions
 - Growing portfolio of products and services
 - Sales and distribution in 140 countries, 12 International distributors
- Talented team of 475+ employees; > one third with advanced degrees
- Multiple accreditations including ISO 9001 and ISO 13485

Agenda

- hTERT-immortalized Primary Cells Portfolio
- Kidney transporter models
 - Current *in vitro* transporter cell models
 - Generation of RPTEC renal transporter models
 - Application data

ATCC classic and advanced cell models

- ATCC is the complete solution supplier
- From basic research through discovery and development to product testing
 - Continuous cell lines
 - Primary cells
 - hTERT immortalized primary cells
- Portfolio features
 - Reliability
 - Fully characterized cells
 - Optimized growth protocols

Continuous cell line: HeLa (ATCC[®] CCL-2[™])

Primary: Umbilical Endothelial Cells (ATCC[®] PCS-100-010[™])

Pros and cons of different cell models

	Primary cells	hTERT immortalized	Oncogene, virally immortalized	Cancer cell lines
Mimic <i>in vivo</i> tissue phenotype	++++	+++	++	+
Genotypic stability	Diploid	Diploid / Near diploid	Near diploid / Aneuploid	Aneuploid
Proliferative capacity	+	+++	+++	+++
Supply	+	+++	+++	+++
Inter-experimental reproducibility	+	+++	+++	+++
Cost	+++	++	+	+
Ease-of-use	+	++	++	+++
Predictability in toxicological studies	+++	+++	++	+

Pros and cons of different cell models

	Primary cells	hTERT immortalized	Oncogene, virally immortalized	Cancer cell lines
Mimic <i>in vivo</i> tissue phenotype	++++	+++	++	+
Genotypic stability	Diploid	Diploid / Near diploid	Near diploid / Aneuploid	Aneuploid
Proliferative capacity	+	+++	+++	+++
Supply	+	+++	+++	+++
Inter-experimental reproducibility	+	+++	+++	+++
Cost	+++	++	+	+
Ease-of-use	+	++	++	+++
Predictability in toxicological studies	+++	+++	++	+

hTERT-immortalized cells are unique tools

hTERT-immortalized cells combine:

- The in vivo nature of primary cells
- The ability to be continuously cultured

hTERT-immortalized cells avoid the limitations of primary cells while still reaping their benefits

ATCC portfolio – skin models

Primary Cells

- Keratinocytes
- Dermal Fibroblasts
- Melanocytes
- Dermal Microvascular Endothelial

hTERT Immortalized Primary Cells

- Keratinocytes
- Dermal Fibroblasts
- Dermal Microvascular Endothelial
- Melanocytes

ATCC keratinocytes cultured at ALI display similar architecture to skin *in vivo*

ATCC portfolio – airway models

Primary Cells

- Lung Fibroblasts
- Bronchial/Tracheal Epithelial Cells
- Small Airway Epithelial Cells
- Lung Smooth Muscle Cells
- Bronchial/Tracheal Smooth Muscle Cells

hTERT Immortalized Primary Cells

- Bronchial/Tracheal Epithelial Cells
- Small Airway Epithelial Cells
- Lung Fibroblasts

ATCC portfolio – urogenital models

Primary Cells

- Prostate Epithelial Cells
- Vaginal Epithelial Cells
- Uterine Fibroblast Cells
- Uterine Smooth Muscle Cells
- Bladder Epithelial (A/T/N) Cells
- Bladder Smooth Muscle Cells
- Bladder Fibroblast Cells

hTERT Immortalized Primary Cells

- Prostate Fibroblast Cells
- Prostate Cancer-associated Fibroblast Cells
- Prostate Epithelial Cells
- Endometrial Fibroblast Cells

hTERT-immortalized prostate cells differentially influence the tumor microenvironment

A representative image of growth and staining of normal prostate epithelial cells in the presence of prostate normal-associated fibroblast (NAF) and prostate cancer-associated fibroblast (CAF). Data were then analyzed for percent change of growth of the experimental cells based on cell densities between the cells in the presence and absence of fibroblast cells.

ATCC'

ATCC portfolio – mesenchymal stem cells

Primary Stem Cells

- Adipose-derived Mesenchymal Stem Cells
- Subcutaneous Pre-adipocytes
- Bone Marrow-derived Mesenchymal Stem Cells
- Umbilical Cord-derived Mesenchymal Stem Cells

hTERT Immortalized Primary Cells

Adipose-derived Mesenchymal Stem Cells

hTERT-immortalized and primary mesenchymal stem cells express equivalent markers

Flow cytometric analysis of surface marker expression determined ATCC hTERTmesenchymal stem cells (MSCs) were equivalent to primary MSCs:

- Bone marrow (BM), adipose tissue (AT), umbilical cord (UC), and hTERT-derived MSCs were tested
- These data meet International Society for Cellular Therapy (ISCT) guidelines

CD Marker	CD14 (%)	CD19 (%)	CD34 (%)	CD45 (%)	CD29 (%)	CD44 (%)	CD73 (%)	CD90 (%)	CD105 (%)	CD166 (%)
BM-MSC	0.26	0.07	2.91	0.15	100	99	100	100	100	94
AT-MSC	0.55	0.23	2.86	0.29	100	100	100	99	100	90
UC-MSC	0.52	0.79	1.50	0.47	100	90	95	96	94	95
hTERT-MSC	0.25	0.23	0.99	0.55	100	100	100	100	99	96

What is the Angio-*Ready*[™] System?

A co-culture system consisting of telomerase-immortalized endothelial cells and mesenchymal stem cells, providing an *in vitro* angiogenesis system that is more close to the *in vivo* situation

A mix of TeloHAEC-GFP (ATCC[®] CRL-4054[™]) and ASC52telo (ATCC[®] SCRC-4000[™]) provided with an optimized medium formulation

Sunitinib blocks tubular structure growth in dose- dependent manner in the Angio-*Ready*™ System

TeloHAEC-GFP and hTERT-MSC cells premixed, thawed and seeded immediately into wells of a 96-well plate, and treated with different doses of sunitinib; fixed and stained with anti- α SMA antibody at day 8

ATCC portfolio – kidney models

Primary Cells

- Renal Proximal Tubule Epithelial Cells
- Renal Cortical Epithelial Cells
- Renal Mixed Epithelial Cells

hTERT Immortalized Primary Cells

- Renal Proximal Tubule Epithelial Cells
- Renal Proximal Tubule Epithelial Cells-OAT1
- Renal Proximal Tubule Epithelial Cells-OCT2
- Renal Proximal Tubule Epithelial Cells-OAT3 (coming soon)

Agenda

- hTERT-immortalized Primary Cells Portfolio
- Kidney transporter models
 - Current *in vitro* transporter cell models
 - Generation of RPTEC renal transporter models
 - Application data

Kidney drug toxicity and transporters

The kidney is one of the major target organs for druginduced toxicity

- Large functional reserve of the kidney
- Nephrotoxic effects become obvious only after regulatory approval

Nephrotoxic potential

- Often underestimated when new drugs are available
- Leads to clinical complications such as COX2 inhibitors

Renal proximal tubule (PT, blue box) is a major target for drug-induced toxicity due to its role in:

- Glomerular filtrate concentration
- Transport of drugs and organic compounds

ATCC

Kidney drug toxicity and transporters

- 2 major transporters (ATP-binding Cassette transporters and **Solute Carrier transporters**)
- My talk today will only focus on SLC transporters
- New (draft) regulatory documents published by FDA, EMA, and ITC (2010 & 2012):

"evaluate OAT1, OCT2, and OAT3 as major SLC targets for drug interaction testing expressed in the kidney"

20

Searching for the best in vitro models

To evaluate the drug transporter interactions, we need a good in vitro model with:

- High predictability
- Mature kidney PT origin
- Best mimics PT micro-environment

The central problem is the lack of good pre-clinical cell-based models

Searching for the best models: Primary cells

Searching for the best models: Renal cell lines

Cell Line	ATCC [®] No.	Species of origin	Nephron segment of origin
LLC-PK1	CL-101™	Yorkshire Pig	Proximal nephron
ОК	CRL-1840™	North American Opossum	Proximal nephron
JTC-12	N/A	Monkey	Proximal nephron
MDCK	CCL-34™	Dog	Collecting duct
A6	CCL-102™	Xenopus	Distal tubule
НК-2	CRL-2190™	Human	HPV16-transformed, Proximal/Distal
Caki-1	HTB-46™	Human	Kidney carcinoma
HEK293	CRL-11268™	Human	Embryonic, SV40T

None of the continuous renal epithelial cell lines have been fully characterized for recapitulating the functions of the PT cells *in vivo*

Searching for the best models: gene modification

Non-kidney or embryonic kidney transformed models (U2OS, CHO, etc...)

Immortalized human adult proximal tubular cells: RPTEC/TERT1

RPTEC/TERT1 (ATCC[®] CRL-4031[™])

- Derived from normal renal PT epithelium
- Immortalized using only hTERT

RPTEC/TERT1 exhibit:

- Uniform expression of E-cadherin and CD13 (aminopeptidase N)
- Dome*-like structures
- Stabilized TEER (Trans-Epithelial Electrical Resistance)

*Domes are multicellular, cystic structures, which have been described previously in epithelia cultured from various tissues that have a known transport or secretory function *in vivo* and *in vitro*

Stable cell line generation

RPTEC/TERT1 cells, like its primary counterparts, lost OAT1, OCT2, and OAT3 expression in culture

Characterization of RPTEC/TERT1-OAT1

Sequencing shows no mutation and 7 copies of OAT1 (vs 2 in the parental line)

Characterization of RPTEC/TERT1-OCT2

Sequencing shows no mutation and 5 copies of OCT2 (vs 2 in the parental line)

ATCC'

Preliminary characterization of RPTEC/TERT1-OAT3

5 copies of OAT3 vs 2 parental

Dome formation – cells maintain original function

Domes are shown by the green arrows

*Domes are multicellular, cystic structures, which have been described previously in epithelia cultured from various tissues that have a known transport or secretory function *in vivo* and *in vitro*

Key renal epithelial marker staining

Scale bar: 100 µm

Key renal epithelial marker staining

Agenda

- ATCC toxicology tools
- Kidney transporter models
 - Current *in vitro* transporter cell models
 - Generation of RPTEC renal transporter models
 - Application data

Experimental design – brief assay protocol

Uptake assay:

- Equal numbers of both parental and transporter cells were seeded into 96-well plate in triplicate and placed in an incubator at 37°C, 5.0% CO₂
- After 24 hours assays were performed
- Increasing concentration of 6-CF or EAM1 were added and incubated for 20 minutes at 37°C
- After wash with cold HBSS 4 times, cells were lysed and uptake intensity were measured

Inhibition assay:

- Equal numbers of both parental and transporter cells were seeded into 96-well plate in triplicate and placed in an incubator at 37°C, 5.0% CO₂
- After 24 hours, assays were performed
- Increasing concentration of inhibitors were added together with constant concentrations of the uptake substrate and incubated for 20 mins at 37°C
- After wash with cold HBSS 4 times, cells were lysed and uptake intensity were measured

These protocols apply to the following series of experiments

OAT1, OCT2 and OAT3 displays high uptake sensitivity

6-CF concentration	0 μΜ	0.5 μΜ	1 μM	2 μM	3 μΜ	5 μΜ	10 µM	25 μM	50 µM	100 µM	OAT1 6-CF
Uptake ratio	1.16	169.67	226.94	239.13	260.74	274.13	287.70	198.19	146.07	84.16	
EAM-1 concentration	0 µM	0.5 μM	1 µM	2 µM	3 µM	5 μΜ	10 µM	25 μM	50 µM	100 µM	
Uptake ratio	2.27	21.56	23.01	22.65	22.73	28.13	29.92	23.72	21.58	21.22	UCTZ EAIVI-J
6-CF concentration	0μΜ	0.5µM	1.0µM	1.5µM	2.0µM	2.5µM	5.0μΜ	7.5µM	10µM	20µM	
Uptake ratio	1.00	5.47	9.05	7.50	7.46	8.58	9.12	3.60	4.51	3.66	UAIS U-CF

OAT1, OCT2 and OAT3 show accurate uptake specificity

36

Independent confirmation of the solute transport ability of RPTEC/TERT1-OCT2

<u>Brief Protocol</u>: Aspirate growth media and wash once with warm 1X PBS; remove PBS and add 250 μ L of cold inhibitors (prepared serum free DMEM, 0.5 μ M) and incubate for 15 minutes; remove inhibitors and add 250 μ L of radio-labeled TEA or metformin (prepared serum free DMEM, 4.5 μ M) and incubate for 15 minutes; after 15 minutes, remove drug and wash 3 times with cold PBS; lyse the cells and count.

Data kindly provided by:

Kevin Huang, *Graduate Research Associate*, Ohio State University, College of Pharmacy Alice Gibson, Ph.D., *Senior Research Specialist*, Ohio State University, College of Pharmacy

Applications for nephron toxicity studies

The following data was kindly provided by Merck & Co., Inc.

Brief Protocol: Cell Viability Assay

- About 35000 cells were seeded per well in triplicate in a 96 well plate
 - Incubated overnight
 - Then incubated with a series of compounds at various concentrations as indicated for 3 days
- Cell viability was subsequently determined using CellTiter-Glo[®] Luminescent Cell Viability (ATP) Assay per Promega's instructions

Tenofovir decreases cell viability in RPTEC/TERT1-OAT1 but not RPTEC/TERT1 cells

Cidofovir treatment decreases cell viability of RPTEC/TERT1-OAT1 but not RPTEC/TERT1 cells

Conclusions – Merck study

Modulation of cell viability with various test articles further indicates active transporter uptake

- RPTEC/TERT1-OAT1 cells but not the parent RPTEC/TERT1 cells demonstrate decreased cell viability following treatment of tenofovir, a substrate of OAT1 and 3.
- Blocking of MRP4, the efflux transporter of tenofovir diphosphate, by ceefourin 2, further decreases cell viability presumably through increase of tenofovir diphosphate concentration in the cell.
- Addition of probenecid, an inhibitor of OAT1, abolished the decrease in RPTEC/TERT1-OAT1 cell viability by tenofovir
- Tenofovir, and cidofovir dose response curves show
 - All 3 compounds are toxic to RPTEC/TERT1-OAT1 cells
 - Tenofovir and cidofovir are not toxic to RPTEC/TERT1, since these compounds cannot enter the cells.

Data kindly provided by: Merck & Co., Inc.

Utility of ATCC next-gen models in drug development

Summary

ATCC RPTEC/TERT1 renal uptake cell models stably overexpress OAT1, OCT2, and OAT3

- Expression has been confirmed by:
 - PCR
 - Western blot
 - Immunocytochemistry
 - Copy number-verified

The clonal stable cells retain important characteristics of *in vivo* adult renal cells

The performance of these stable cells are well characterized by:

- 6-CF and EAM-1 uptake assays
- Inhibition assays
- Confirmed by TEA, Metformin and PAH uptake assays
- Tested against the well know renal toxic drugs

RPTEC/TERT1-OCT2 (ATCC[®] CRL-4031-OCT2[™])

Resources

We have other hTERT cells – for a complete list download either:

- hTERT-immortalized Cell Culture Guide
- hTERT-immortalized Cells Brochure

For more information visit www.atcc.org/hTERT

ATCC® hTERT IMMORTALIZED CELL CULTURE GUIDE tips and techniques for culturing hTERT immortalized cells

ATCC THE ESSENTIALS OF LIFE SCIENCE RESEARCH GLOBALLY DELIVERED

hTERT-IMMORTALIZED ATCC' PRIMARY CELLS

Enjoy the best of all worlds with human telomerase reverse transcriptase (hTERT)-immortalized Primary Cells from ATCC.

capacity.

USEFUL CANCER MODELS

hTERT-immortalized Primary Cells more closely mimic the physiol- hTERT-immortalized Primary Cells are invaluable tools in several ogy of cells in vivo. hTERT-Immortalized Primary Cells are derived research areas including investigating the pathogenesis of many disfrom differentiated cells and exhibit tissue-specific features, express ease states, toxicological testing, and drug screening. The cells are differentiation-specific proteins, and form structures that resemble effective controls because they do not transform spontaneously in culture and yet, they can be easily transformed to malignant phenotypes (as compared to primary cells) because of their proliferative

hTERT-immortalized Primary Cells are tested for extended prolifera-

tive capacity, selected phenotypic markers from the tissue of inter-

Ity in vitro. Unlike primary cells, hTERT-Immortalized Primary Cells do GROWING SPECTRUM OF TOOLS not senesce after a few passages, reducing the need to repurchase ATCC offers a growing line of immortalized cells of diverse cell types and tissue sources. In addition to standard ATCC authentication.

otype and do not show changes associated with transformation such

hTERT-immortalized Airway Cells	
Description	ATCC* No.
NuLi-1, human bronchial epithelium, normal	CRL4011**
CuFi-1, human bronchial epithelium, cystic fibrosis	CRL4013**
CuFi-4, human bronchial epithelium, cystic fibrosis	CRL4015**
CuFi-5, human bronchial epithelium, cystic fibrosis	CRL4016**
CuFi-6, human bronchial epithelium, cystic fibrosis	CRL4017**
HBEC3-KT, human bronchial epithelium, normal	CRL4051**
HSAEC1-KT, human small airway epithelium, normal	CRL4050**
hTERT lung fibroblast	CRL-4058**
TERT-immortalized Chondrocyte Fibroblast Cells	
Description	ATCC* No.
CHON-001, human bone cartilage fibroblast, normal	CRL-2846**
CHON-002, human bone cartilage fibroblast, normal	CRL-2847**
TERT-immortalized Dermal Microvascular Endothelial Cells	
Description	ATCC* No.
TIME, human dermal microvascular endothelium, normal	CRL4025**
TIME-GFP, human dermal microvascular endothelium, normal	CRL4045**
NFxB-TIME, human dermal microvascular endothelium, normal	CRL4049*
TERT-immortalized Endometrial Fibroblast Cells	
Description	ATCC [®] No.
	CDL 60038

Thank you

© American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise. The hTERTimmortalized cells are distributed under the terms of the ATCC Material Transfer Agreement and Addendum for TERT products.