Introduction to ATCC[®] Microbiome Standards

An End-to-end Solution for the Standardization of Microbiome Research

Dev Mittar, Ph.D. Lead Scientist, ATCC

Nick Greenfield, M.A. Founder & CEO, One Codex

About ATCC

- Founded in 1925, ATCC is a non-profit organization with HQ in Manassas, VA and an R&D and Services center in Gaithersburg, MD
- World's premiere biological materials resource and standards development organization
 - 5,000 cell lines
 - 80,000 microbes
 - Genomic & synthetic nucleic acids
 - Media/Reagents
- ATCC collaborates with and supports the scientific community with industrystandard and innovative biological solutions
 - Growing portfolio of products and services
 - Sales and distribution in 150 countries, 14 International distributors
- Talented team of 450+ employees; over one-third with advanced degrees

An innovative global partner for authentic biomaterials, standards, and services

Outline

- Importance of microbiome research and the need for standards
- Development of the ATCC[®] Microbiome Standards
- Evaluating biases by using ATCC[®] Microbiome Standards
- Data analysis on the One Codex platform

Microbiome Research

The Need for Standardization

Microbiome Research

A microbiome is defined as the totality of microorganisms and their collective genetic material present in or on the human body or in another environment.

The human microbiome is one of the major areas of research in microbiology, with widespread applications in the area of human health, personalized medicine, forensic analyses, and environmental studies, etc.

PubMed

- ~35,000 total papers
- ~80% in the last 5 years

Start-up companies

• 24 new companies in 2016

Microbiome Research: Challenges & Need for Standardization

Microbiome Workflow, Biases, and Standardization

DNA Extraction: DNA Purification Chemistry

Library Preparation: Interlaboratory Variability

ATCC

9

Choice of 16S rRNA Region: Primer Specificity

Data Analysis

ATCC

Amplification of three different 16S rRNA regions generated different microbiome data upon the analysis of genomic DNA extracted from a mock community

Bioinformatics Analyses and Databases

11

Unmet Needs for Assay Optimization & Daily Run Controls

- **Controlled reference material that mimics complex microbiome specimens**
- Assay development and optimization
- Daily run control

Mock communities

- Mixed genomic DNA
- Mixed bacterial whole cells

ATCC[®] Microbiome Standards

ATCC

Development of the Standards

Genomic DNA and Whole Cells

Selection Attributes for Strains

ATCC [®] No.	Name	Gram Stain	% GC	Genome Size (Mb)	Special Features	Microbiome	16S rRNA Copies	GenBank ID
10987™	Bacillus cereus	+	35.2	5.42	Endospores former	Soil	12	NC_003909.8
15703™	Bifidobacterium adolescentis	+	59.2	2.09	Anaerobe	Gut	5	NC_008618.1
35702™	Clostridium beijerinckii	+	30	6.49	Spores former	Gut/soil	14	NC_009617.1
BAA-816™	Deinococcus radiodurans	-	66.7	3.29	Thick cell wall	Gut/environment	7	NC_001263.1
47077™	Enterococcus faecalis	+	37.5	3.36	Biofilm producer	Gut	4	NC_017316.1
700926™	Escherichia coli	-	50.8	4.64	Facultative anaerobe	Gut	7	NC_000913.3
33323™	Lactobacillus gasseri	+	35.3	1.89	Nuclease producer	Vaginal/gut	6	NC_008530.1
17029™	Rhodobacter sphaeroides	-	68.8	4.60	Metabolically diverse	Aquatic	3	NZ_AKVW01000001.1
12228™	Staphylococcus epidermidis	+	31.9	2.56	Thick cell wall	Skin/mucosa	5	NC_004461.1
700610™	Streptococcus mutans	+	36.8	2.03	Facultative anaerobe	Oral	5	NC_004350.2
17978™	Acinetobacter baumannii	-	39	4.34	Filaments, capsule	Environment	6	NZ_CP009257.1
17982™	Actinomyces odontolyticus	+	65.5	2.39	Type 1 fimbriae	Oral	2	NZ_DS264586.1
8482™	Bacteroides vulgatus	-	42.2	5.16	Anaerobe	Gut	7	NC_009614.1
700392™	Helicobacter pylori	-	38.9	1.67	Helix shaped	Stomach/gut	2	NC_000915.1
BAA-335™	Neisseria meningitidis	-	51.5	2.27	Diplococcus	Respiratory tract	4	NC_003112.2
33277™	Porphyromonas gingivalis	-	48.4	2.35	Anaerobe, collagenase	Oral	4	NC_010729.1
11828™	Propionibacterium acnes	+	60	2.56	Aerotolerant anaerobe	Skin	4	NC_006085.1
9027™	Pseudomonas aeruginosa	-	66.6	6.26	Facultative anaerobe	Skin	4	NC_009656.1
BAA-1556™	Staphylococcus aureus	+	32.8	2.82	Thick cell wall	Skin/respiratory	6	NC_007795.1
BAA-611™	Streptococcus agalactiae	+	35.6	2.16	Serogroup B	Vaginal/environment	7	NC_004116.1

Development of Whole Cell Standards

ATCC Cultures

- Authenticated and fully characterized
- Genome sequenced
- Published in multiple databases

Growth & Quantification

- CFU
- Image cytometry
- Flow cytometry

Mix & Lyophilize

- Store at 4°C
- Ship at room temperature
- Mixed in even proportions based on number of cells

Development of Genomic DNA Standards

ATCC Cultures

- Authenticated and fully characterized
- Genome sequenced
- Published in multiple databases

Extraction & Quality Control

- Fluorescent dye-based quantification
- Digital PCR
- Gel electrophoresis

Mixed in Even and Staggered Proportions

- Store at -20°C
- Mixed in even or staggered proportions based on copy number

Evaluation of Bias using ATCC[®] Microbiome Standards

Evaluation of DNA Extraction Methods Using Whole Cell Standards

ATCC

Evaluation of DNA Extraction Methods Using Whole Cell Standards

ATCC[®] MSA-2002[™] Percent of number of reads (Relative abundance)

Species	Expected	Kit A	Kit B	Kit C	
Acinetobacter baumannii	5.00%	2.50%	2.60%	6.19%	
Actinomyces odontolyticus	5.00%	1.00%	1.01%	1.11%	
Bacillus cereus	5.00%	8.85%	5.26%	5.38%	
Bacteroides vulgatus	5.00%	18.25%	18.45%	5.87%	
Bifidobacterium adolescentis	5.00%	1.12%	0.99%	0.79%	
Clostridium beijerinckii	5.00%	0.22%	0.21%	0.16%	
Deinococcus radiodurans	5.00%	17.13%	18.80%	22.13%	
Enterococcus faecalis	5.00%	2.04%	1.82%	3.52%	
Escherichia coli	5.00%	1.67%	1.75%	3.37%	
Helicobacter pylori	5.00%	0.39%	0.43%	0.07%	
Lactobacillus gasseri	5.00%	0.42%	0.38%	0.95%	
Neisseria meningitidis	5.00%	1.05%	1.26%	0.92%	
Porphyromonas gingivalis	5.00%	4.39%	4.60%	0.17%	
Propionibacterium acnes	5.00%	1.50%	1.54%	1.47%	
Pseudomonas aeruginosa	5.00%	12.39%	16.73%	16.12%	
Rhodobacter sphaeroides	5.00%	5.00%	5.92%	8.76%	
Staphylococcus aureus	5.00%	0.98%	0.83%	2.21%	
Staphylococcus epidermidis	5.00%	0.89%	0.60%	1.73%	
Streptococcus agalactiae	5.00%	2.35%	2.12%	3.64%	
Streptococcus mutans	5.00%	17.88%	14.69%	15.45%	

Evaluation of Bias in DNA Extraction Using Whole Cell Standard with 16S rRNA and Shotgun Analyses

Acinetobacter baumannii

Evaluation of Bias in DNA Extraction Using Whole Cell Standard with 16S rRNA and Shotgun Analyses

ATCC[®] MSA-2002[™] · Percent of number of reads (Relative abundance)

Aree Mor 2002 : refeelt of hamber of reads (heldine abandance)					
Species	Expected	Kit A-16S rRNA	Kit B-16S rRNA	Kit A-Shotgun	Kit B-Shotgun
Acinetobacter baumannii	5.00%	5.77%	4.44%	3.10%	3.58%
Actinomyces odontolyticus	5.00%	3.21%	1.62%	2.85%	2.58%
Bacillus cereus	5.00%	12.69%	16.57%	4.57%	7.09%
Bacteroides vulgatus	5.00%	3.76%	2.68%	0.93%	1.12%
Bifidobacterium adolescentis	5.00%	1.05%	1.69%	1.08%	1.11%
Clostridium beijerinckii	5.00%	0.31%	0.60%	0.06%	0.09%
Deinococcus radiodurans	5.00%	10.77%	14.10%	35.69%	29.67%
Enterococcus faecalis	5.00%	14.21%	9.47%	8.37%	9.33%
Escherichia coli	5.00%	5.92%	4.69%	6.08%	6.32%
Helicobacter pylori	5.00%	0.96%	0.77%	0.39%	0.61%
Lactobacillus gasseri	5.00%	3.68%	5.22%	0.89%	1.15%
Neisseria meningitidis	5.00%	2.70%	2.27%	1.93%	2.00%
Porphyromonas gingivalis	5.00%	0.84%	0.84%	0.94%	1.08%
Propionibacterium acnes	5.00%	1.72%	1.43%	2.36%	2.24%
Pseudomonas aeruginosa	5.00%	6.48%	2.38%	8.60%	8.50%
Rhodobacter sphaeroides	5.00%	2.40%	1.43%	9.08%	8.64%
Staphylococcus aureus	5.00%	3.92%	3.56%	1.31%	1.59%
Staphylococcus epidermidis	5.00%	2.12%	1.94%	0.65%	0.86%
Streptococcus agalactiae	5.00%	10.85%	16.66%	4.71%	5.49%
Streptococcus mutans	5.00%	6.63%	7.65%	6.42%	6.95%

ATCC

Percent of number of reads (Relative abundance)							
Creation		ATCC [®] MSA-100	0™	A	ATCC [®] MSA-1001™		
Species	Expected	d 16S rRNA	Shotgun	Expected	16S rRNA	Shotgun	
Bacillus cereus	10.00%	5.94%	6.24%	4.48%	3.98%	1.49%	
Bifidobacterium adolescentis	10.00%	10.90%	11.34%	0.04%	0.15%	0.08%	
Clostridium beijerinckii	10.00%	5 7.94%	5.00%	0.45%	0.69%	0.11%	
Deinococcus radiodurans	10.00%	10.36%	15.62%	0.04%	0.08%	0.10%	
Enterococcus faecalis	10.00%	5 11.04%	10.76%	0.04%	0.13%	0.04%	
Escherichia coli	10.00%	13.26%	14.60%	4.48%	10.06%	6.37%	
Lactobacillus gasseri	10.00%	5 17.54%	8.90%	0.45%	1.17%	0.24%	
Rhodobacter sphaeroides	10.00%	2.07%	10.25%	44.78%	14.32%	77.01%	
Staphylococcus epidermidis	10.00%	13.99%	6.88%	44.78%	69.01%	14.27%	
Streptococcus mutans	10.00%	6.95%	10.40%	0.45%	0.41%	0.28%	

25

Species	AT	CC [®] MSA-100	2™	ATCC [®] MSA-1003™		
Species	Expected	16S rRNA	Shotgun	Expected	16S rRNA	Shotgun
Acinetobacter baumannii	5%	4.27%	4.94%	0.18%	0.13%	0.18%
Actinomyces odontolyticus	5%	6.40%	5.92%	0.02%	0.05%	0.03%
Bacillus cereus	5%	2.92%	1.90%	1.80%	1.30%	0.65%
Bacteroides vulgatus	5%	9.74%	5.04%	0.02%	0.05%	0.02%
Bifidobacterium adolescentis	5%	4.46%	6.15%	0.02%	0.12%	0.03%
Clostridium beijerinckii	5%	3.77%	1.34%	1.80%	1.95%	0.50%
Deinococcus radiodurans	5%	3.45%	8.64%	0.02%	0.07%	0.03%
Enterococcus faecalis	5%	4.99%	3.63%	0.02%	0.14%	0.02%
Escherichia coli	5%	5.09%	6.96%	18.00%	19.06%	23.02%
Helicobacter pylori	5%	7.99%	4.84%	0.18%	0.28%	0.17%
Lactobacillus gasseri	5%	8.22%	2.97%	0.18%	0.34%	0.11%
Neisseria meningitides	5%	7.12%	7.27%	0.18%	0.20%	0.25%
Porphyromonas gingivalis	5%	5.88%	6.61%	18.00%	25.08%	22.68%
Propionibacterium acnes	5%	4.51%	8.00%	0.18%	0.16%	0.29%
Pseudomonas aeruginosa	5%	2.38%	7.94%	1.80%	0.83%	2.69%
Rhodobacter sphaeroides	5%	0.63%	6.95%	18.00%	3.44%	26.58%
Staphylococcus aureus	5%	4.89%	1.91%	1.80%	2.37%	0.76%
Staphylococcus epidermidis	5%	6.37%	2.02%	18.00%	29.62%	7.30%
Streptococcus agalactiae	5%	3.97%	3.21%	1.80%	1.44%	1.19%
Streptococcus mutans	5%	2.93%	3.76%	18.00%	13.39%	13.48%

ATCC

26

Evaluation of 16S rRNA Databases Using the Genomic DNA Standard

Evaluation of Different Bioinformatics Platforms and Databases for Shotgun Analysis

28

Summary and Conclusions

ATCC® Microbiome Standards

- Full process control
 - Whole cells
 - 10 and 20 organisms mix
 - Even composition
- Assay development
 - Genomic DNA
 - 10 and 20 organisms mix
 - Even and staggered composition

- Acinetobacter baumannii
 Bacillus cereus
- Bifidobacterium adolescentis
- Deinococcus radiodurans
- Escherichia coli
- Lactobacillus gasseri
- Porphyromonas gingivalis
- Pseudomonas aeruginosa
- Staphylococcus aureus
- Streptococcus agalactiae

- Actinomyces odontolyticus
 Bacteroides vulgatus
- Clostridium beijerinckii
- Enterococcus faecalis
- Helicobacter pylori
- Neisseria meningitidis
- Propionibacterium acnes
- Rhodobacter sphaeroides
- Staphylococcus epidermidis
- Streptococcus mutans

ATCC[®] Microbiome Standards come as a bundled product with standardized data analysis from One Codex

A Platform for Microbiome Research & Application

ONE CODEX

Nick Greenfield CEO, One Codex

1 Platform Overview

Product Details

1) Platform Overview

One Codex – Background

- Leading bioinformatics platform for microbial genomics
- Supports taxonomic & functional analysis of metagenomic (WGS), 16S rRNA, etc.
- "Sequence to answer" data platform
- Software engineering with microbiology expertise

Che Codex - Analysis Res 3	-							
fi 📓 https://beta.onecode	ax.com/analysis/public/b2c257	5e497e400a					ជ	
ONE CODEX								4
Analysis: ERR262951.trir	nmed.fastq						One Codex D	atabase •
This is a mixed/metagen One Codex (Summer 20'	omic sample 78.46% of 4,7 15) database.	59,504 reads were	classified using t	he			MIXED	ISOLATE
Composition overview	<i>r</i> :						*	Read-Level Data
High Abundance (0):	This sample does not con	ntain any dominant	species.				Last	Compare Sample
Medium Abundance (2): Bacteroides [Ruminococcus] torques (likely strain: Ruminococcus torques L2-14)			0					
Low Abundance (20):	Dorea formicigenerans Subdoligranulum sp. 4, Eggerthella lenta, Eschr	, Dorea longicaten _3_54A2FAA, Bifido erichia coli and 10	a, Akkermansia m bacterium bifidur more.	nuciniphil m, Hunga	a, [Eubacterium] hallii, tella hathewayi, Alistipes,			
Sample Composition								
Name		Readcount (% o	f classified reads	5)				
Bacteroides			446005 (11.94%	63		Readcount Taxono	mic name	
Ruminococcus	torques L2-14		225699 (6.04%	0		63285 Firmio	utes	
Clostridiales		206694 (5.5=%)			39 Clos	tridia		
Akkermansia n	nuciniphila		153734 (4.129	0		200094 Cit	SCI IGLEIES	
[Eubacterium]	hallii DSM 3353		127725 (3.429	0				
Subdoligranuli	um sp. 4_3_54A2FAA		112343 (3.019	63				
Complete Result Table								
Organism Name		Rank	Тах	ID	% of Classified Reads	% of All Reads	# of Reads	# of Reads (w Children)
Bacteroides		Genus	816		11.94	9.37	446005	67870
Duminarantus terminaria a	4	Strain	65731	3	6.04	4.74	225699	22565
nurfilhococcus torques L2-14								
Clostridiales		Order	18680	12	5.54	4.34	206694	158812

Our Technology

A "sequence to answer" data platform for metagenomics

Flexible & Intuitive Interface

Easy to use GUI with powerful tools for extension (APIs, libraries, and notebooks)

Security, Reproducibility, Compliance Infrastructure

Versioned, reproducible analyses, HIPAA, 21 CFR part 11

Scalable Platform

Support for "databanks" of 10,000s of NGS samples

Our Domain Knowledge

A "sequence to answer" data platform for metagenomics

Taxonomic Classification

Best-in-class pipelines for both shotgun metagenomics and amplicon sequencing (16S, 18S, etc.)

Functional Characterization

In silico assays for gene panels and other functional markers (AMR, virulence, etc.)

Largest Microbial Database

Collection of >100K whole microbial genomes across bacteria, viruses, fungi, protists, and archaea

A Sample Microbiome Study

Comprehensive Benchmarking Results

New Results

Comprehensive Benchmarking and Ensemble Approaches for Metagenomic Classifiers

Alexa McIntyre, Rachid Ounit, Ebrahim Afshinnekoo, Robert Prill, Elizabeth Henaff, Noah Alexander, Sam Minot, David Danko, Jonathan Foox, Sofia Ahsanuddin, Scott Tighe, Nur A Hasan, Poorani Subramanian, Kelly Moffat, Shawn Levy, Stefano Lonardi, Nick Greenfield, Rita Colwell, Gail Rosen, Christopher E Mason **doi:** https://doi.org/10.1101/156919

This article is a preprint and has not been peer-reviewed [what does this mean?].

Preview PDF

Abstract

One of the main challenges in metagenomics is the identification of microorganisms in clinical and environmental samples. While an extensive and heterogeneous set of computational tools is available to classify microorganisms using whole genome shotgun sequencing data, comprehensive comparisons of these methods are limited. In this study, we use the largest (n=35) to date set of laboratory-generated and simulated controls across 846 species to evaluate the performance of eleven metagenomics classifiers. We also assess the effects of filtering and combining tools

McIntyre et al., in press

Comprehensive Benchmarking Results

in press

1) Platform Overview

ATC C[®] Microbiome Standards

nature microbiology

CONSENSUS STATEMENT

PUBLISHED: 11 JANUARY 2016 | ARTICLE NUMBER: 15015 | DOI: 10.1038/NMICROBIOL.2015.15

An assessment of US microbiome research

Elizabeth Stulberg^{1*}, Deborah Fravel², Lita M. Proctor³, David M. Murray⁴, Jonathan LoTempio³, Linda Chrisey⁵, Jay Garland⁶, Kelly Goodwin^{7,8}, Joseph Graber⁹, M. Camille Harris¹⁰, Scott Jackson¹¹, Michael Mishkind¹², D. Marshall Porterfield¹³ and Angela Records¹⁴

Computational biology and bioinformatics, reference databases and biorepositories, standardized protocols and high-throughput tools were commonly identified needs. Longitudinal and functional studies and interdisciplinary research were also identified as needs.

The interlaboratory comparability of measurements on microbiomes is generally poor.

"

ATC C[®] Microbiome Standards

Bioinformatics Workflow

1 Platform Overview

Product Details

Some Codex	Sign Up
Sign in to your account	
Email	
Password Forgot?	
Sign In	

Don't have an account? Click here to register.

app.onecodex.com	ů 0
🔀 One Codex	Sign In
Create your account	
Nick Greenfield	
One Codex	
415-742-2733	
nick@onecodex.com	
I agree with the Terms of Use	
Create an account	

Ů Ū + < > app.onecodex.com 🔒 Demo 🖀 Samples Welcome! You don't have any coupons for the ATCC Microbiome Standards. Please redeem the coupon e-mailed to you after your purchase. 🛓 Upload / Import Q. Search Select an existing sample... Choose your ATCC product Lili Compare Analyses ATCC Product Type Whole Cell Genomic DNA Find samples ... 📩 Cluster View **Microbiome Reference** Sequencing Shotgun 16S Notebooks Standards ATCC MSA-1000™ ATCC MSA-1001™ ... or upload a FASTQ file ATCC Standards You have no uses remaining. 10 Strain Staggered Mix Genomic NEW **10 Strain Even Mix Genomic** Material Material Redeem Coupon ## Help & Documentation A mixture of nucleic acids isolated from ten A mixture of nucleic acids isolated from ten (10) ATCC Genuine Cultures® and prepared (10) ATCC Genuine Cultures® and prepared ATCC Microbiome Reference with even relative abundance ratios. Order with staggered relative abundance ratios. Standards are mock microbial now » Order now » communities for use as controls optimizing your metagenomics workflows and microbiome research. ATCC MSA-1002™ ATCC MSA-1003™ Learn more » Drop a file here 20 Strain Even Mix Genomic 20 Strain Staggered Mix Genomic or click to pick manually Material Material A mixture of nucleic acids isolated from A mixture of nucleic acids isolated from twenty (20) ATCC Genuine Cultures® and twenty (20) ATCC Genuine Cultures® and prepared with even relative abundance prepared with staggered relative abundance ratios. Order now » ratios. Order now » ATCC MSA-4000TM Continue & Add Metadata Metagenomic Control Material for **Pathogen Detection** A mixture of nucleic acids from 10 species (11 strains) isolated from ATCC Genuine Cultures® for clinically relevant pathogen detection. Order now »

ONE CODEX

		app.onecodex.com ℃	Å Ø
			👗 Demo
 Samples Upload / Import 		·· - What 165 amplicish region was used?	
Q Search	ATCC	The Views in Views with the Views	
Luster View	Microbiome Reference Standards	V6- Estather	
 Notebooks BETA Run Analyses 	ATCC MSA-1000™ MSA-1000.16S.example.fastq.gz You have no uses remaining.		
T ATCC Standards	Redeem Coupon	2 → What sequencing instrument was used?*	
III Help & Documentation	ATCC Microbiome Reference Standards are mock microbial communities for use as controls —	Type or select an option	
	workflows and microbiome research. Learn more »	Illumina MiSeq	
		Illumina MiniSeq	
		Illumina NextSeq 500/550	
		Illumina HiSeq 2000	
		Illumina HiSeq 2500	
		Illumina HiSeq 3000/4000	
		Illumina HiSeq X Ten	
		Ion S5	
		Ion S5 XL	
		Ion PGM	
		1 b	
			U

		app.onecodex.com		Ċ	山の
					🛔 Demo
🗯 Samples		- what was the rac	inty of raporatory?		
🕹 Upload / Import		One Godex S	eouencino Pann	en	
Q Search	ATCC		ada an an a sur		
🕍 Compare Analyses	Microbiome Reference Standards	. What is the institu	utional affiliation?"		
Notebooks	ATCC MSA-1000™ MSA-1000.16S.example.fastq.gz You have no uses remaining.				
ATCC Standards	Redeem Coupon	Core Fadinty	El Other		
III Help & Documentation	ATCC Microbiome Reference Standards are mock microbial communities for use as controls — optimizing your metagenomics workflows and microbiome research. Learn more »				
			R		
		60% completed			

+

< >		app.onecodex.com	<u>ٿ</u> <i>ס</i>
			👗 Demo
🛱 Samples		 what was the facility of laboratory? 	
🕹 Upload / Import	0	One Corley Seruencing Pattner	
Q Search	ATCC	One oppex bedgeronig ranner	
🔟 Compare Analyses 🏭 Cluster View	Microbiome Reference Standards	What is the institutional affiliation?"	
Notebooks EstA	ATCC MSA-1000™ MSA-1000.16S.example.fastq.gz You have no uses remaining.	Academic 🛛 Commercial 🗸 🔅 Public He	
T ATCC Standards	Redeem Coupon	Core Fadility II Other	
Help & Documentation	ATCC Microbiome Reference Standards are mock microbial communities for use as controls – optimizing your metagenomics workflows and microbiome research. Learn more »	Submit press ENTER	
		100% completed	

< 1

I ONE CODEX

🚔 Samples

🛓 Upload / Import

Q. Search

III Compare Analyses

Cluster View

🗐 Notebooks

Run Analyses

ATCC Standards

Help & Documentation

NEW

ATCC

Microbiome Reference Standards

ATCC MSA-1000™ MSA-1000.16S.example.fastq.gz You have no uses remaining.

Redeem Coupon

ATCC Microbiome Reference Standards are mock microbial communities for use as controls optimizing your metagenomics workflows and microbiome research. Learn more »

Thank you for providing your sample information!

app.onecodex.com

Click here for results press ENTER

		app.onecodex.com	C C C
			🛔 Demo
Samples	Control — MSA-1000.16S.example.fasta.gz		ATCC Microbiome Standard (16S) -
L Upload / Import	1 10		
Q Search			
Lul Compare Analyses		Overall Score - 89%	Download Results +
🛔 Cluster View	ATCC	True Positives: 100% Relative Abundance: 66% False Positives: 100% @	89.4% of reads map to true positives in the control, while 0.4% map to false positives and 10.2% are unclassified
Notebooks	True Positive	s	
🕈 Run Analyses	Detection of organisms in the contr	100% °	
The ATCC Standards	₩ Expand ¥	10 true positives detected (of 10 total)	
III Help & Documentation	8		
	Relative Abundance Quantification of organisms in the contr Expand ¥	66% 10 organisms in control	
	False Positive Detection of organisms not in the contr Expand *	s 100% 0 false positives	
	Sample Metadata Sample preparation details & metada Expand ¥	a ™ 16S sequencing of MSA-1000™	

Please Note: This report, and the information in it, is intended for conduct of research only and is not designed, nor approved, to be used for patient care or diagnostic purposes. Job Version ID: c6a75a42cd704b93.

<u><</u> > <u> </u>		🖨 app.onecod	ex.com	C		
						🚨 Demo
🖶 Samples	Control — MSA-1000.16S.example.fastq.gz				Lill ATCC Microb	piome Standard (16S) +
Q Search	ATCC	Overall Score – True Positives: 100% Relative Abundance: 66%	89% False Positives: 100% @	89.4% of read	's map to true positives in the control, while (Download Results -).4% map to false positives and 10.2% are unclassified
Notebooks DETA Run Analyses ATCC Standards NEW	True Positives Detection of organisms in the control Collapse *	100% 10 true positives detected (of 10 total)			Filt	er organisms
Help & Documentation >		Organism		# of Reads	% of True Positives	% Expected
		Bacillus cereus	Present	12049	5.95	10.00
		Bifidobacterium adolescentis	Present	9103	10.79	10.00
		Clostridium beijerinckii	Present	18560	7.85	10.00
		Deinococcus radiodurans	Present	12217	10.34	10.00
		Enterococcus faecalis	Present	7357	10.90	10.00
		Escherichia coli	Present	15892	13.45	10.00
		Lactobacillus gasseri	Present	17793	17.57	10.00
	Relative Abundance Quantification of organisms in the control Expand ¥	66% ° 10 organisms in control				
	False Positives Detection of organisms not in the control Expand *	100% O false positives				Q

< > 🗉

ATCC Standards

III Help & Documentation

NEW

app.onecodex.com

10 true positives detected (of 10 total)

<u>0</u> +

_

Filter organisms...

Organism		# of Reads	% of True Positives	% Expected	
Bacillus cereus	Present	12049	5.95	10.00	
Bifidobacterium adolescentis	Present	9103	10.79	10.00	
Clostridium beijerinckii	Present	18560	7.85	10.00	
Deinococcus radiodurans	Present	12217	10.34	10.00	
Enterococcus faecalis	Present	7357	10.90	10.00	
Escherichia coli	Present	15892	13,45	10.00	
Lactobacillus gasseri	Present	17793	17.57	10.00	

Relative Abundance

Collapse *

Collapse 🛪

Quantification of organisms in the control

66% °
10 organisms in cor

10 organisms in control			Filter organisms	
Organism		% of True Positives	Detected / Expected	
Bacillus cereus	Moderate	5.95	0.59	
Bifidobacterium adolescentis	Good	10.79	1.08	
Clostridium beijerinckii	Moderate	7.85	0.79	
Deinococcus radiodurans	Good	10.34	1.03	
Enterococcus faecalis	Good	10.90	1.09	
Escherichia coli	Moderate	13.45	1.35	
Lactobacillus gasseri	Paar	17.57	1.76	

False Positives

Expand ≫

Detection of organisms not in the control

0 false positives

<>

app.onecodex.com

1 0 +

Organism		% of True Positives	Detected / Expected
Bacillus cereus	Moderate	5.95	0.59
Bifidobacterium adolescentis	Good	10.79	1.08
Clostridium beijerinckii	Moderate	7.85	0.79
Deinococcus radiodurans	Good	10.34	1.03
Enterococcus faecalis	Good	10.90	1.09
Escherichia coli	Moderate	13.45	1.35
Lactobacillus gasseri	Poor	17.57	1.76

False Positives

Collapse 🛪

Detection of organisms not in the control

100% °			
0 false positives			Filter organisms
Organism		# of Reads	% of Reads
Corynebacterium	Птасе	76	0.062
Vibrio	Trace	60	0.049
Streptomyces	Trace	56	0.046
Porphyromonas	Trace	46	0.038
Methylobacterium	Trace	26	0.021
Paenibacillus	Trace	24	0.020
Thiothrix	Trace	24	0.020

Sample Metadata

Sample preparation details & metadata

16S sequencing of MSA-1000™

Expand ⊗

			🔒 app.onecodex.com	Ċ		Å ð
						👗 Demo
🖶 Samples	Control — MSA-	1000.16S.example.fastq.gz			ATCC Microbiome	Standard (16S) -
L Upload / Import						
Q Search						
🔟 Compare Analyses			Overall Score – 89%		I	Download Results +
Cluster View	AILL		True Positives: 100% Relative Abundance: 66% False Positives: 100% 🔞	89.4% of reads map to true positi	ves in the control, while 0.4% ma	p to false positives and 10.2% are unclassified
Notebooks	TA .	True Positives				
🕈 Run Analyses		Detection of organisms in the control	100% °			
ATCC Standards	w)	Expand *	10 true positives detected (of 10 total)			
Help & Documentation	×					
		Relative Abundance				
		Quantification of organisms in the control	66% °			
		Expand ≈	10 organisms in control			
		Talas Daskinsa				
		Paise Positives Detection of organisms not in the control	100% 0			
		Expand >	0 false positives			
		Sample Metadata				
		Sample preparation details & metadata	16S sequencing of MSA-1000™			
		Collapse 🖄	165 Amplicon: VA	Facility: One Codex Sequencing Partner		
			Facility Type: Commercial Technician: Lab Tech OCX	Instrument: Illumina MiSeq		
					Edit Detailed Metadata	Edit Metadata
B SECURE CONNECTION		Please Note: This report, and the infor	mation in it, is intended for conduct of research only and is not designed, nor approved, to	be used for patient care or diagnostic purposes. Job Ve	rsion ID: c6a75a42cd704b93.	e

Conclusion

Fast Results

Accurate Reporting

Easy to Use

Validate & Optimize Protocols

Nick Greenfield CEO

nick@onecodex.com 603-667-5630

ATCC Microbiome Research Solutions

ATCC

Order online at www.atcc.org/Microbiome

Disclaimers

The proof-of-concept data presented in this webinar was generated by whole genome sequencing or amplicon sequencing of the ATCC[®] Microbiome Standards using the Illumina[®] Platform. These proof-of-concept datasets are available as examples on the One Codex website along with additional metadata. The information supplied for ATCC[®] Microbiome Standards on the One Codex website constitutes neither a recommendation nor endorsement of specified methods or materials. ATCC and One Codex do not guarantee identical results to these proof-of-concept datasets when performing similar analyses.

© American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise. Illumina[®] is a registered trademark of Illumina, Inc.

Thank You For Joining Today!

Register for more ATCC webinars at <u>www.atcc.org/Webinars</u>

Learn more about our microbiome research solutions at <u>www.atcc.org/Microbiome</u>

