Genetically Modified Human Renal Proximal Tubule Epithelial Cells (RPTEC/TERT1) – A New Model for Drug Toxicity Studies

Chaozhong Zou, Ph.D.

Senior Scientist, ATCC
About ATCC

- Founded in 1925, ATCC is a non-profit organization with headquarters in Manassas, VA

- World’s premiere biological materials resource and standards development organization

- ATCC collaborates with and supports the scientific community with industry-standard biological products and innovative solutions

- Strong team of 400+ employees; over one third with advanced degrees
Agenda

- Renal transport
- Current renal models
- Generation of RPTEC renal uptake models
- Application data
- Summary
Renal transport proteins

Play important roles for drug:
- Absorption
- Distribution
- Elimination

Can be divided into 2 classes:
- The ATP-binding cassette (ABC) family, most are efflux transporters
- The solute carrier (SLC) family, most are influx transporters, some are efflux and bidirectional

Expression and activities at the basolateral and apical side of transporting epithelia are significant determinants for:
- Drug disposition
- Drug-drug interactions
- Variability in drug response and toxicity

Kidney epithelial cells recapitulate *in vivo* tubule formation, image courtesy of Moe Mahjoub
Toxicologically important transport proteins

<table>
<thead>
<tr>
<th>Transporter/alias</th>
<th>Organs/cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>OATP1B1/OATP-C, OATP2, LST-1</td>
<td>Hepatocytes (sinusoidal)</td>
</tr>
<tr>
<td>OATP1B3/OATP-8 (SLCO1B3)</td>
<td>Hepatocytes (sinusoidal)</td>
</tr>
<tr>
<td>OAT1 (SLC22A6)</td>
<td>Kidney proximal tubule, placenta</td>
</tr>
<tr>
<td>OAT3 (SLC22A8)</td>
<td>Kidney proximal tubule, choroid plexus, blood–brain barrier</td>
</tr>
<tr>
<td>OCT2 (SLC22A2)</td>
<td>Kidney proximal tubule, neurons</td>
</tr>
</tbody>
</table>

RPTEC/TERT1-OCT2 (ATCC® CRL-4031-OCT2™)
Renal transport protein substrates and inhibitors

<table>
<thead>
<tr>
<th>Substrates</th>
<th>Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAT1</td>
<td></td>
</tr>
<tr>
<td>- Cipro</td>
<td>- Probenecid</td>
</tr>
<tr>
<td>- Methotrexate</td>
<td>- Novobiocin</td>
</tr>
<tr>
<td>- Acyclovir</td>
<td>- Novobiocin</td>
</tr>
<tr>
<td>- Tenofovir</td>
<td>- Novobiocin</td>
</tr>
<tr>
<td>OAT3</td>
<td></td>
</tr>
<tr>
<td>- NSAIDS</td>
<td>- Probenecid</td>
</tr>
<tr>
<td>- Cefaclor</td>
<td>- Novobiocin</td>
</tr>
<tr>
<td>- Ceftizoxime</td>
<td>- Novobiocin</td>
</tr>
<tr>
<td>- Furosemide</td>
<td>- Novobiocin</td>
</tr>
<tr>
<td>- Bumetanide</td>
<td>- Novobiocin</td>
</tr>
<tr>
<td>OCT2</td>
<td></td>
</tr>
<tr>
<td>- Pindolol</td>
<td>- Cimetidine</td>
</tr>
<tr>
<td>- Amiloride</td>
<td>- Pilsialnide</td>
</tr>
<tr>
<td>- Oxalliplatin</td>
<td>- Etrizine</td>
</tr>
<tr>
<td>- Varenicline</td>
<td>- Testosterone</td>
</tr>
<tr>
<td></td>
<td>- Quinidine</td>
</tr>
</tbody>
</table>

Focus on transporters in new regulatory documents

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P-gp/MDR1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Multi</td>
</tr>
<tr>
<td>BCRP</td>
<td>+</td>
<td></td>
<td>+</td>
<td>Multi</td>
</tr>
<tr>
<td>BSEP</td>
<td></td>
<td>+</td>
<td></td>
<td>Liver</td>
</tr>
<tr>
<td>OATP1B1</td>
<td>+</td>
<td></td>
<td>+</td>
<td>Liver</td>
</tr>
<tr>
<td>OATP1B3</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Liver</td>
</tr>
<tr>
<td>OCT1</td>
<td></td>
<td></td>
<td>+</td>
<td>Liver</td>
</tr>
<tr>
<td>OAT1</td>
<td>+</td>
<td></td>
<td>+</td>
<td>Kidney</td>
</tr>
<tr>
<td>OAT3</td>
<td>+</td>
<td></td>
<td>+</td>
<td>Kidney</td>
</tr>
<tr>
<td>OCT2</td>
<td>+</td>
<td></td>
<td>+</td>
<td>Kidney</td>
</tr>
</tbody>
</table>

New (draft) regulatory documents published by FDA, EMA, and ITC recommended evaluate NME as substrate and drug interaction on the most important membrane transporters expressed in liver, intestine, and kidney
Agenda

- Renal transport
- Current renal models
- Generation of RPTEC renal uptake models
- Application data
- Summary
Cell line-based models

Current cell line-based models are available:
- MDCK (ATCC® CCL-34™)
- CHO-K1 (ATCC® CCL-61™)
- U-2 OS (ATCC® HTB-96™)
- Others

Problems with these lines:
- Do not have the human kidney tissue origination
- The cell line itself is a cancer line

Therefore, the clinical predictability is greatly compromised
Primary cell-derived models

Problems with primary kidney cell models:

- Obtaining primary cultures is difficult
 - The kidney comprises 15 cell types
 - The nephron comprises 20 cell types
 - Homogeneous cultures retaining physiological functions are hard to obtain

- Primary RPTEC lose OAT1, OCT2, and OAT3 expression in culture

- Transiently expressing transporters in primary RPTEC show large variations between production lots
 - Makes the data hard to interpret
Renal cell lines

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>ATCC® No.</th>
<th>Species of origin</th>
<th>Nephron segment of origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLC-PK1</td>
<td>CL-101™</td>
<td>Yorkshire Pig</td>
<td>Proximal nephron</td>
</tr>
<tr>
<td>OK</td>
<td>CRL-1840™</td>
<td>North American Opossum</td>
<td>Proximal nephron</td>
</tr>
<tr>
<td>JTC-12</td>
<td>N/A</td>
<td>Monkey</td>
<td>Proximal nephron</td>
</tr>
<tr>
<td>MDCK</td>
<td>CCL-34™</td>
<td>Dog</td>
<td>Collecting duct</td>
</tr>
<tr>
<td>A6</td>
<td>CCL-102™</td>
<td>Xenopus laevis</td>
<td>Distal tubule</td>
</tr>
<tr>
<td>HK-2</td>
<td>CRL-2190™</td>
<td>Human</td>
<td>HPV16-transformed, Proximal/Distal?</td>
</tr>
<tr>
<td>Caki-1</td>
<td>HTB-46™</td>
<td>Human</td>
<td>Kidney carcinoma</td>
</tr>
<tr>
<td>HEK293/OAT1</td>
<td>CRL-11268G-1™</td>
<td>Human</td>
<td>Embryonic</td>
</tr>
</tbody>
</table>

None of the continuous renal epithelial cell lines fully recapitulate the functions of the parental cells *in vivo*
Pros and cons of different cell models for tissue-relevant functional studies

<table>
<thead>
<tr>
<th></th>
<th>Primary cells</th>
<th>hTERT immortalized</th>
<th>Oncogene, virally immortalized</th>
<th>Cancer cell lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mimic in vivo tissue phenotype</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Genotypic stability</td>
<td>Diploid</td>
<td>Diploid / Near diploid</td>
<td>Near diploid / Aneuploid</td>
<td>Aneuploid</td>
</tr>
<tr>
<td>Proliferative capacity</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Supply</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Inter-experimental reproducibility</td>
<td>Low</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Cost</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Ease-of-use</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+++</td>
</tr>
</tbody>
</table>
hTERT-immortalized cells provide unique tools

hTERT-immortalized cells combine:

- The *in vivo* nature of primary cells
- The ability to be cultured continuously

hTERT-immortalized cells avoid the limitations of primary cells and continuous cell lines while still reaping their benefits

RPTEC/TERT1-OCT2 (ATCC® CRL-4031-OCT2™)
The parental cell

RPTEC/TERT1 (ATCC® CRL-4031™)

- An epithelial cell line
- Isolated from human renal proximal tubes
- Immortalized by hTERT only

RPTEC/TERT1 exhibit:

- Uniform expression of E-cadherin and CD13 (aminopeptidase N)
- Dome-like structures
- Stabilized TEER
Agenda

- Renal transport
- Current renal models
- Generation of RPTEC renal uptake models
- Application data
- Summary
Stable cell line generation

- OAT1, OCT2, and OAT3 delivery
- RPTEC/TERT1 cells
- Surviving RPTEC/TERT1 cells
- Clonal selection, Validation, and expansion
- RPTEC/TERT1-OAT1, OCT2, and OAT3 clonal cells

Antibiotic selection
RPTEC/TERT1-OAT1

RT-PCR

Western Blot

Sequencing: no mutation
OAT1 correctly localizes to the cell membrane in RPTEC/TERT1
RPTEC/TERT1-\textsc{OCT2}

A. RT-PCR

B. Western Blot

C. Sequencing: No mutation
OCT2 correctly localizes to cell membrane in RPTEC/TERT1
Growth characteristics of stably transfected RPTEC/TERT1

<table>
<thead>
<tr>
<th>Low density</th>
<th>RPTEC/TERT1</th>
<th>RPTEC/TERT1-OAT1</th>
<th>RPTEC/TERT1-OCT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>High density</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scale bar: 400 µm
RPTEC/TERT1 renal uptake key marker staining

CD13

Merged with DAPI

E-cadherin

Merged with DAPI

Scale bar: 100 µm
Dome formation

RPTEC/TERT1

RPTEC/TERT1-OAT1

RPTEC/TERT1-OCT2

Scale bar: 100 µm
Agenda

- Renal transport
- Current renal models
- Generation of RPTEC renal uptake models
- Application data
- Summary
RPTEC/TERT1-OAT1 drug kinetic profile

RPTEC/TERT1-OAT1 5-CF uptake

EC_{50}=89.21\mu M
Known OAT1 inhibitors block the RPTEC/TERT1-OAT1 5-CF uptake

Probenecid Inhibits RPTEC/TERT1 OAT1 5-CF uptake

Novobiocin Inhibits RPTEC/TERT1 OAT1 5-CF uptake

IC\textsubscript{50}=4.48\mu M

IC\textsubscript{50}=77.63\mu M
RPTEC/TERT1-OCT2 drug kinetic profile

RPTEC/TERT1-OCT2 uptake assay

![Graph showing uptake (RFU) vs ASP+ concentration (μM)]

- RPTEC/TERT1
- RPTEC/TERT1-OCT2

OCT2 EC₅₀ = 15.43 μM
Known OCT2 inhibitors block the RPTEC/TERT1-OCT2 Asp+ uptake

Cimetidine inhibits OCT2 Asp+ uptake

Quinitin inhibits OCT2 ASP+ uptake

IC50 = 138.9 μM

IC50 = 55.14 μM
Agenda

- Renal transport
- Current renal models
- Generation of RPTEC renal uptake models
- Application data
- Summary
We generated clonal RPTEC/TERT1 renal uptake cell models by stably expressing OAT1 and OCT2 proteins

- Expression has been confirmed by:
 - PCR
 - Western blot
 - Immunocytochemistry

The clonal stable cells keep the original characteristics of the RPTEC/TERT1 cells

The performance of these stable cells are well characterized by:

- 5-CF uptake assays
- ASP uptake assays
- Inhibitor assays
Disclaimers

© American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise. The hTERT-immortalized cells are distributed under the terms of the ATCC Material Transfer Agreement and Addendum for TERT products.
Thank you for joining today!

Register for more ATCC webinars at www.atcc.org/webinars

Learn more about transfection at www.atcc.org/transfection

For more information about cell health visit www.atcc.org/cellhealth

Please email additional questions to: tech@atcc.org