Finding Your Perfect Match – Evolving Technologies for Bacterial Strain Typing

Brian Cantwell, Ph.D. Scientist, ATCC

About ATCC

- Founded in 1925, ATCC is a non-profit organization with headquarters in Manassas, VA and an R&D and Services center in Gaithersburg, MD (225,000 sq. ft. total)
- World's largest and most diverse biological materials resource center
 - 5,000 cell biology products
 - 80,000 microorganisms
- ATCC collaborates with and supports the scientific community with industry-standard biological products and innovative solutions
- Talented team of 450+ employees; over onethird with advanced degrees

Established partner to global researchers and scientists

Outline

- Definition of a strain
- Why strain typing is important
- Phenotypic and genotypic methods for strain identification

Definition of a strain

What is a "strain"?

- An individual isolate?
- A clonal population?
- A genetic variant?

A strain is a genetic variant or subtype of a microorganism below the level of species and subspecies

Strain variability

Strains of the same species can have a wide range of variation

Why is it important to identify strains?

Identify novel isolates

Defining type strains and variants

Clinical impact

 Identifying antimicrobial-resistant strains and virulent strains

Epidemiology

 Tracking outbreak sources and modes of transmission

Image of *Staphylococcus* aureus courtesy of NIAID

Identifying strains

Phenotypic Methods

BiotypingPhage typingSerotyping

Genotypic Methods

7

- PCR analysis
- Sequence analysis

Biotyping

The use of differential tests, in addition to typical morphological and functional analyses used to determine the genus and species

- Growth in differential media
- Colony morphology
- Cell morphology
- Motility
- Antimicrobial resistance

These assays have limited discriminatory power

Phage typing

- Divides species into strains on the basis of susceptibility to bacteriophage lysis
- Uses common lab equipment and techniques
- Good discriminating power, but limited by panels of available phages and susceptibility to mutation

Phage typing

Serotyping

Image of *Salmonella* serotype Typhi courtesy of the CDC

- Groups strains on the basis of antigenic variation on the cell surface
- Convenient and widely used
 - Rapid and easy to perform
 - Requires the use of basic lab equipment
- Limited by the availability of antibodies against specific antigens

Serotyping

Bacterial species	Antigens	53
Escherichia coli	LPS oligosaccharide Flagellar subunit	Ha
<i>Salmonella</i> sp.	LPS oligosaccharide Flagellar subunit Capsule	A
<i>Pseudomonas</i> sp.	LPS oligosaccharide	0
Streptococcus pneumoniae	Capsule	
Haemophilus influenza	Capsule	Image of <i>Escherichia coli</i> courtesy of Elizabeth H. White, M.S.

Serotyping

Direct agglutination

Indirect agglutination (Latex beads)

Genotypic methods

- Genome fragment size
 - Electrophoresis-based methods
- Gene presence
 - PCR-based detection of genes

Gene sequence

Nucleotide sequence of one or more genes

Bacterial genome

Core Genome

- Set of housekeeping genes in all strains
- · Evolves slowly
- Conserved positions

Accessory Genes

- Additional functions in a subset of strains
- Includes virulence genes, resistance genes, prophage, etc.
- Evolves quickly
- Frequent rearrangement, insertion/deletion

Electrophoretic analysis

Fragment genomic DNA using restriction enzymes

Visualize fragments and compare pattern to database

Restriction fragment length polymorphism

DNA cut into small fragments

- Generates large number of fragments
- Visualized by hybridization probe

Difference in banding pattern

- Lost or gained restriction enzyme sites
- Insertions or deletions

Examples

- Ribotyping 16S rDNA probe
- Clostridium toxinotyping PCR of highly variable toxin locus

Pulsed-field gel electrophoresis

Bacterial cells imbedded in gel plugs

- Cells lysed and DNA digested in plugs
- Generate 10-20 large fragments

Separate DNA by using a pulsed-field gel apparatus

Directly visualize fragments

Compare pattern to those within an established database

Software stores and compares imaged gels

Pulsed-field gel electrophoresis databases

PulseNet

- Established by CDC in 1996
- Searchable database of PFGE patterns
- Patterns provided by local health labs
- CDC cluster analysis looks for patterns in new uploads

PulseNet International

- Success of PulseNet led to similar efforts in other regions
- Advanced networks in Europe, Canada, etc.
- Challenges in developing world include access to PFGE equipment and data

Multiple Locus Variable-number Tandem Repeat Analysis

Strain A

Variable-number tandem repeats

- Short repeated nucleotide sequences
- Found in most organisms
- The number of repeats varies between strains

MLVA

- Amplify tandem repeat loci by PCR and separate by electrophoresis
- Visualize using fluorescently labeled primers

MLVA resources

- PulseNet, MLVABank
- Strain databases and protocols for different MLVA equipment
- PulseNet Databases include Salmonella and E. coli O157:H7
- MLVABank has databases for ~20 species

Strain B PCR Electrophoresis Multiple VNTR loci analyzed simultaneously to increase discrimination

Amplified Fragment Length Polymorphism

- Frequent restriction sites
- Many smaller fragments (~50 to ~1,000 bp)

Visualize subset of fragments

- Non-specific adapter annealed to the restriction site
- PCR primers bind adapter and restriction sites
- Separate fragments by electrophoresis and visualize

No prior sequence knowledge required

- Environmental samples
- Eukaryotes
- Commercial kits

Base pairs at end of primer match to subset of fragments

CGGCTATCTCA... Digest

Add

Adapter

PCR w/

primer

PCR w/

primer

mismatch

matching

TAATGCCGATAGAGT...

TAATGCCGATAGAGT...

'ÀÀTĠCCGATAGAGT...

...NNNGATTACGGCTATCTCA... ...NNNCTAATGCCGATAGAGT...

..NNNGATTAC<mark>GGC</mark>

...NNNGATTAC<mark>TAG</mark>

ATCC

...GATTA

...C

3 base extension will match ~1/64 fragments

Comparative genomic fingerprinting

Targets the presence of accessory genes

 Target selection enabled by the availability of genome sequences

Multiplex PCR and electrophoresis to detect ~40 genes

- Isolates groups into subtypes based on patterns of genes present
 - Assays available for Campylobacter, Arcobacter, and Escherichia

Gene sequence

DNA template and primer

- Plasmid DNA
- Amplified PCR product
- Specific oligonucleotide primer

Amplification

- Incorporates nucleotides labeled with fluorescent dyes
- Sequence length up to ~700 bp

Analysis

- Fluorescent dyes detected to determine nucleotide sequence
- Sequence results compared to sequence databases – NCBI, etc.

Gene sequence

- Detects sequence changes that produce:
 - Altered restriction sites
 - Changes in size

 Detects all sequence changes within the area examined

Electrophoresis

Sequencing

Gene sequence

Methicillin-resistant Staphylococcus aureus

- spa
- SCCmec

Clostridium difficile

slpA (molecular serotyping)

Rickettsia

ompA

Genes need to have sufficient variability to discriminate and sufficient conservation to be in many strains

Similar methodology to single gene sequence

Leverages greater number of genes for better discrimination

PCR amplify and sequence the defined regions of housekeeping genes – usually 7

Assign the allele number to each unique DNA sequence of each gene

Compare to database to assign sequence type number to each unique combination of alleles

MLST databases

- Establish primer sets to define sequenced regions of each species
- Collect allele sequences and combinations from researchers
- Define sequence types for allele combinations
- Gather databases from multiple species into general MLST

MLST information

- Easy to store sequence text versus gel images
- Easy and fast to search text files

Multilocus sequence typing database

pMLST Databases Downloads BIGSdb Contact Site map	Google™ Custom Search S
Velcome to PubMLST - Public databases for molecular typing and microbial genome diversity. • Log in or register for a PubMLST account • Databases • Download MLST definitions - allelic profiles and sequences from all publicly accessible databases • BIGSdb - software that runs most of the databases on this site • Documentation - user and curator guides for BIGSdb • MLST schemes hosted on other sites • Information about all species MLST databases and published schemes • Recent publications that use or mention MLST • News and updates • Site map • Policy document • RESTful Application Programming Interface (API) • International mirrors of this site: Primary NL1 NO1 UK4 US1 Please contact us if you would like us to host a MLST database for a particular organism, or have a request for new unctionality. The primary PubMLST site is hosted at The Department of Zoology, University of Oxford, UK and is funded by The Wellcome Trust.	News 2017-01-17: MLST schem for <i>Macrococcus canis</i> an <i>caseolyticus</i> have been developed by Vincent Perreten and Christian Strauss, University of Bel Switzerland, and are now available. 2016-11-11: MLST schem for <i>Brucella</i> spp. have been developed by Adrian Whatmore and colleagues Animal and Plant Health Agency, UK, and are now available. 2016-11-09: MLST schem for <i>Mycoplasma iowae</i> an <i>M. synoviae</i> have been developed by Mohamed E Gazzar and Mostafa Ghanem, The Ohio State University, USA, and are now available. Latest updates

University of Oxford, Wellcome Trust

Multilocus sequence typing database

http://mlst.mycologylab.org/

Example species available in PubMLST databases

	Eukaryotes		
Escherichia coli #1	Acinetobacter baumannii	Bacillus cereus	Candida albicans
Enterobacter cloacae	<i>Borrelia</i> spp.	Staphylococcus aureus	Candida tropicalis
Salmonella enterica	Burkholderia pseudomallei	Streptococcus pneumoniae	Aspergillus fumigatus
Klebsiella pneumoniae	Campylobacter jejuni	Arcobacter spp.	Penicillium marneffei
Yersinia pseudotuberculosis	Helicobacter pylori	Wolbachia spp.	Kudoa septempunctata
Vibrio parahaemolyticus	Neisseria spp.	Xylella fastidiosa	Trichomonas vaginalis
	9 MLST schemes		

PubMLST Database home Contents

🕄 Log in

Download allele sequences

Select loci by scheme | Alphabetical list | All loci by scheme

MLST

Locus	Download	Type	Alleles	Length (setting)	Min length	Max length	Full name/product Curator(s)	Last updated
arcC	*	DNA	436	Fixed: 456 bp	435	457	K. Jolley	2017-01-23
aroE	*	DNA	588	Fixed: 456 bp	453	456	K. Jolley	2017-01-23
glpF	*	DNA	523	Fixed: 465 bp	450	466	K. Jolley	2017-01-23
gmk	*	DNA	297	Fixed: 417 bp	417	420	K. Jolley	2017-01-30
pta	*	DNA	468	Fixed: 474 bp	474	474	K. Jolley	2017-01-31
tpi	*	DNA	429	Fixed: 402 bp	402	402	K. Jolley	2017-01-30
yqiL	*	DNA	511	Fixed: 516 bp	516	516	K. Jolley	2017-01-23

Staphylococcus aureus

31,885 isolates 3,775 sequence types

glpF_8	AGCTGGCGCGAAATTAGGTGTTTTCTCTACAGCACCGGCTATTAAGAATTACTTTGCCAACTTTT	
glpF_22	AGCTGGCGCGAAATTAGGTGTTTTCTCTACAGCA <mark>T</mark> CGGCTATTAAGAATTACTTTGCCAACTTTT	
glpF_309	AGCTGGCGCAAAATTAGGTGTTTTCTCTACAGCACCGGCTATTAAGAATTACTTTGCCAACTTTT	
glpF_237	AGCTGGCGCGAAATTAGGTGTTTTCTCTACAGCACCA <mark>GCTATT</mark> AAGAATTACTTTGCCAA <mark>T</mark> TTTT	
glpF_324	AGCTGGCGCGAAATTAGGTGTTTTCTCTACAGCACCA <mark>GCTATT</mark> AAGAATTACTTTGCCAA <mark>T</mark> TTTT	
glpF_205	AGCTGGCGC <mark>A</mark> AAATTAGGTGTTTTCTCTACAGCACCGGCTATTAAGAATTACTTTGCCAACTTTT	
glpF_82	AGCTGGCGCGAAATTAGGTGTTTTCTCTACAGCACCGGCTATTAAGAATTACTTTGCCAACTTTT	
glpF_267	AGCTGGCGCGAAATTAGGTGTTTTCTCTACAGCACCGGCTATTAAGAATTACTTTGCCAACTTTT	
glpF_358	AGCTGGCGCGAAATTAGGTGTTTTCTCTACAGCACCGGCTATTAAGAATTACTTTGCCAACTTTT	
glpF_298	AGCTGGCGCGAAATTAGGTGTTTTCTCTACAGCACCGGCTATTAAGAATTACTTTGCCAACTTTT	
glpF_212	AGCTGGCGC <mark>A</mark> AAATTAGGTGTTTTCTCTACAGCACCGGCTATTAAGAATTACTTTGCCAACTTTT	
glpF_49	AGCTGGCGC <mark>A</mark> AAATTAGGTGTTTTCTCTACAGCACCGGCTATTAAGAATTACTTTGCCAACTTTT	
glpF_207	AGCTGGCGCAAAATTAGGTGTTTTCTCTACAGCACCGGCTATTAAGAATTACTTTGCCAACTTTT	

ST	ancC	aroE	glpF	gmk	pta	tpi	yqiL
1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	26
3	1	1	1	9	1	1	12
4	10	10	8	6	10	3	2
5	1	4	1	4	12	1	10
6	12	4	1	4	12	1	3
7	5	4	1	4	4	6	3
8	3	3	1	1	4	4	3
9	3	3	1	1	1	1	10
10	8	7	6	2	9	9	7
11	1	24	1	4	12	1	10
12	1	3	1	8	11	5	11
13	1	3	1	10	11	5	11
14	1	13	1	1	12	11	13

Sequence types are grouped together on the basis of similarity

Identical at number of alleles

Can be used to track changes to a population

Each arrow represents a change at one locus relative to the original sequence type

Whole genome sequence

Fragments are aligned and assembled into larger contigs

Pyrosequencing generates a very large number of small (~30-50 bp) fragments

• Automated process

Contigs are assembled to produce finished chromosomes

Manual process

CCGTACTCGGCATGCTAATATCTCGATCTA

CTCGATCTACGCZTGAATGCATCGAT

TCGATTATCGATCGATCATCGA

...CCGTACTCGGCATGCTAATATCTCGATCTACGCZTGAATGCATCGATTATCGATCGATCATCGA...

Whole genome sequence

Multi-locus analysis

- MLST
- Pairwise SNP comparison
- Phylogenetic analysis

Single locus analysis

- Single gene typing (e.g. MRSA spa)
- Molecular typing
 - Identify serotype by specific alleles

Molecular detection of phenotypic typing markers

 Virulence genes, antimicrobial resistance genes, biochemical pathways, phage receptors

Whole genome sequence

Limitations to whole genome sequencing

- Cost
- Bioinformatics expertise

Currently used by national labs

- Centers for Disease Control and Prevention
- United States Department of Agriculture

Summary

- Strain typing identifies characteristics that differ between isolates of the same species
- Phenotypic typing methods, such as serotyping, offer speed and ease of use
- Genetic typing methods assess strain differences at the DNA level
 - Electrophoretic techniques look for changes in DNA fragment patterns
 - Sequencing techniques directly analyze the DNA sequence of one or more genes
- Genetic typing offers increasing levels of discrimination but requires more specialized equipment and training

Disclaimers

© American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise.

Thank you for joining today!

Register for more ATCC webinars at <u>www.atcc.org/webinars</u>

View our collection of antimicrobialresistant reference materials at <u>www.atcc.org/superbugs</u>

questions to: tech@atcc.org

