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Definition of a strain
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What is a “strain”?

 An individual isolate?

 A clonal population?

 A genetic variant?

A strain is a genetic variant or subtype of a 
microorganism below the level of species and 
subspecies
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Strain variability
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Strains of the same species can have a wide range of variation

Few nucleotide changes

• Few observable differences

1000’s of Kb of DNA 
difference 

• Prophage

• Genetic islands

• Mobile elements

Common core of 
housekeeping genes



Why is it important to identify strains?

Identify novel isolates

 Defining type strains and variants

Clinical impact

 Identifying antimicrobial-resistant strains and 
virulent strains

Epidemiology

 Tracking outbreak sources and modes of 
transmission
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Image of Staphylococcus 
aureus courtesy of NIAID



Identifying strains
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Biotyping
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The use of differential tests, in addition to 
typical morphological and functional analyses 
used to determine the genus and species

 Growth in differential media

 Colony morphology

 Cell morphology

 Motility

 Antimicrobial resistance

These assays have limited discriminatory 
power
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Phage typing
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 Divides species into strains on the basis of 
susceptibility to bacteriophage lysis

 Uses common lab equipment and techniques

 Good discriminating power, but limited by 
panels of available phages and susceptibility 
to mutation
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Phage typing
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Phage #1

Phage #2 Phage #3

Phage #4

Prepare a lawn 
of the bacterial 
test strain

Spot with aliquots 
of each phage in 
the panel

Evaluate the pattern of 
phage susceptibility to 
identify the strain

Plaque formation 
indicates susceptibility 
to a particular phage



Serotyping
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 Groups strains on the basis of antigenic 
variation on the cell surface

 Convenient and widely used

• Rapid and easy to perform

• Requires the use of basic lab equipment

 Limited by the availability of antibodies 
against specific antigens
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Image of Salmonella 
serotype Typhi courtesy of 
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Bacterial species Antigens

Escherichia coli
LPS oligosaccharide
Flagellar subunit

Salmonella sp.
LPS oligosaccharide
Flagellar subunit
Capsule

Pseudomonas sp. LPS oligosaccharide

Streptococcus pneumoniae Capsule

Haemophilus influenza
Capsule Image of Escherichia coli courtesy 

of Elizabeth H. White, M.S.



Serotyping
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Direct agglutination

Indirect agglutination
(Latex beads)

Culture

Antibody solution

Mix

(-) (+)



Genotypic methods

Genome fragment size

 Electrophoresis-based methods

Gene presence

 PCR-based detection of genes

Gene sequence

 Nucleotide sequence of one or more genes
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Bacterial genome
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Core Genome

• Set of housekeeping genes 
in all strains

• Evolves slowly

• Conserved positions

Accessory Genes

• Additional functions in a 
subset of strains

• Includes virulence genes, 
resistance genes, 
prophage, etc.

• Evolves quickly

• Frequent rearrangement, 
insertion/deletion



Electrophoretic analysis
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Separate by size using 
electrophoresis  

+ 
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Fragment genomic DNA using 
restriction enzymes

Visualize fragments 
and compare 
pattern to database



Restriction fragment length polymorphism
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DNA cut into small fragments

 Generates large number of fragments

 Visualized by hybridization probe

Difference in banding pattern

 Lost or gained restriction enzyme sites

 Insertions or deletions

Examples

 Ribotyping – 16S rDNA probe

 Clostridium toxinotyping – PCR of highly 
variable toxin locus
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Pulsed-field gel electrophoresis

Bacterial cells imbedded in gel plugs

 Cells lysed and DNA digested in plugs

 Generate 10-20 large fragments

Separate DNA by using a pulsed-field gel 
apparatus

 Directly visualize fragments

Compare pattern to those within an 
established database

 Software stores and compares imaged gels
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Pulsed-field gel electrophoresis databases
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PulseNet

• Established by CDC in 1996

• Searchable database of 
PFGE patterns

• Patterns provided by local 
health labs

• CDC cluster analysis looks 
for patterns in new 
uploads

PulseNet
International

• Success of PulseNet led to 
similar efforts in other 
regions

• Advanced networks in 
Europe, Canada, etc.

• Challenges in developing 
world include access to 
PFGE equipment and data



Multiple Locus Variable-number Tandem Repeat 
Analysis

Variable-number tandem repeats

 Short repeated nucleotide sequences

 Found in most organisms

 The number of repeats varies between strains

MLVA

 Amplify tandem repeat loci by PCR and separate 
by electrophoresis

 Visualize using fluorescently labeled primers

MLVA resources

 PulseNet, MLVABank

 Strain databases and protocols for different 
MLVA equipment

 PulseNet Databases include Salmonella and E. 
coli O157:H7

 MLVABank has databases for ~20 species
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Multiple VNTR loci analyzed 
simultaneously to increase 
discrimination

Strain A

Strain B

PCR

Electrophoresis



Amplified Fragment Length Polymorphism
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Process DNA with RFLP

 Frequent restriction sites

 Many smaller fragments (~50 to ~1,000 bp)

Visualize subset of fragments

 Non-specific adapter annealed to the 
restriction site

 PCR primers bind adapter and restriction sites

 Separate fragments by electrophoresis and 
visualize

No prior sequence knowledge required

 Environmental samples

 Eukaryotes

 Commercial kits
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Base pairs at end of primer match to 
subset of fragments

3 base extension will match ~1/64 
fragments

Digest

Add
Adapter

PCR w/ 
matching 
primer

PCR w/ 
mismatch 
primer

…GATTA
…C

CGGCTATCTCA…
TAATGCCGATAGAGT…

…NNNGATTACGGCTATCTCA…
…NNNCTAATGCCGATAGAGT…

||||||||||||
…NNNCTAATGCCGATAGAGT…

…NNNGATTACGGC

…NNNGATTACTAG

…NNNCTAATGCCGATAGAGT…
|||||||||



Comparative genomic fingerprinting

Targets the presence of accessory genes

 Target selection enabled by the availability of 
genome sequences

Multiplex PCR and electrophoresis to detect 
~40 genes

Isolates groups into subtypes based on 
patterns of genes present

 Assays available for Campylobacter, 
Arcobacter, and Escherichia
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Gene sequence
DNA template and primer

 Plasmid DNA

 Amplified PCR product 

 Specific oligonucleotide primer

Amplification

 Incorporates nucleotides labeled with 
fluorescent dyes

 Sequence length up to ~700 bp

Analysis

 Fluorescent dyes detected to determine 
nucleotide sequence

 Sequence results compared to sequence 
databases – NCBI, etc.
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Gene sequence

24

• Detects sequence changes 
that produce:
• Altered restriction sites

• Changes in size

Electrophoresis

• Detects all sequence 
changes within the area 
examined

Sequencing



Gene sequence

Methicillin-resistant Staphylococcus aureus

 spa

 SCCmec

Clostridium difficile

 slpA (molecular serotyping)

Rickettsia

 ompA
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Genes need to have 
sufficient variability to 
discriminate and sufficient 
conservation to be in many 
strains



Multilocus sequence typing
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Similar methodology to 
single gene sequence

Leverages greater number of 
genes for better 
discrimination

Compare to database to assign sequence type 
number to each unique combination of alleles

Assign the allele number to each unique DNA 
sequence of each gene

PCR amplify and sequence the defined regions of 
housekeeping genes – usually 7



Multilocus sequence typing
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• Establish primer sets to define sequenced 
regions of each species

• Collect allele sequences and combinations 
from researchers

• Define sequence types for allele 
combinations

• Gather databases from multiple species into 
general MLST 

MLST databases

• Easy to store sequence text versus gel images

• Easy and fast to search text files

MLST information 



Multilocus sequence typing database
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http://pubmlst.org/
University of Oxford, Wellcome Trust

http://pubmlst.org/


Multilocus sequence typing database

29http://mlst.mycologylab.org/

http://mlst.mycologylab.org/


Multilocus sequence typing
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Bacteria Eukaryotes

Escherichia coli #1 Acinetobacter baumannii Bacillus cereus Candida albicans

Enterobacter cloacae Borrelia spp. Staphylococcus aureus Candida tropicalis

Salmonella enterica Burkholderia pseudomallei Streptococcus pneumoniae Aspergillus fumigatus

Klebsiella pneumoniae Campylobacter jejuni Arcobacter spp. Penicillium marneffei

Yersinia 
pseudotuberculosis

Helicobacter pylori Wolbachia spp. Kudoa septempunctata

Vibrio parahaemolyticus Neisseria spp. Xylella fastidiosa Trichomonas vaginalis

92 MLST schemes 9 MLST schemes

Example species available in PubMLST databases



Multilocus sequence typing
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University of Oxford, Wellcome Trust

Staphylococcus aureus

31,885 isolates
3,775 sequence types

http://pubmlst.org/


Multilocus sequence typing

Sequence types are grouped together on the 
basis of similarity

 Identical at number of alleles

Can be used to track changes to a population
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Each arrow represents a change at 
one locus  relative to the original 
sequence type

ST

1
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2
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Whole genome sequence
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CTCGATCTACGCZTGAATGCATCGAT
CCGTACTCGGCATGCTAATATCTCGATCTA

TCGATTATCGATCGATCATCGA

…CCGTACTCGGCATGCTAATATCTCGATCTACGCZTGAATGCATCGATTATCGATCGATCATCGA…

Fragments are aligned and assembled 
into larger contigs

• Automated process

Pyrosequencing generates a very large 
number of small (~30-50 bp) 
fragments

• Manual process

Contigs are assembled to produce 
finished chromosomes



Whole genome sequence
Multi-locus analysis

 MLST

 Pairwise SNP comparison

 Phylogenetic analysis

Single locus analysis

 Single gene typing (e.g. MRSA spa)

 Molecular typing

• Identify serotype by specific alleles

Molecular detection of phenotypic typing 
markers

 Virulence genes, antimicrobial resistance genes, 
biochemical pathways, phage receptors
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Most sequence-based typing 
can be done using contigs, 
without the need to fully 
assemble the genome



Whole genome sequence
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Limitations to whole genome sequencing

 Cost

 Bioinformatics expertise

Currently used by national labs

 Centers for Disease Control and Prevention

 United States Department of Agriculture 
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Summary
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 Strain typing identifies characteristics that 
differ between isolates of the same species

 Phenotypic typing methods, such as 
serotyping, offer speed and ease of use

 Genetic typing methods assess strain 
differences at the DNA level

• Electrophoretic techniques look for 
changes in DNA fragment patterns

• Sequencing techniques directly analyze 
the DNA sequence of one or more genes

 Genetic typing offers increasing levels of 
discrimination but requires more specialized 
equipment and training
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Thank you for joining today!

Register for more ATCC webinars at 
www.atcc.org/webinars

View our collection of antimicrobial-
resistant reference materials at 
www.atcc.org/superbugs

Register for more ATCC webinars at 
www.atcc.org/webinars

View our collection of antimicrobial-
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Please email additional 
questions to: tech@atcc.org
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