Neural progenitor cells – Toxicological models for the 21st century

Brian Shapiro, Ph.D. *Technical Writer*, Cell Biology, ATCC July 28, 2016

About ATCC

- Founded in 1925, ATCC is a non-profit organization with headquarters in Manassas, VA
- World's premiere biological materials resource and standards development organization
- ATCC collaborates with, and supports, the scientific community with industry-standard biological products and innovative solutions
- Strong team of 400+ employees; over onethird with advanced degrees

Neural Progenitor Cells (NPCs) and Media

- Background information
- Differentiation potential of ATCC NPCs
- Toxicological studies
- Summary

The current status of neurobiology research

- Primary cells from animals (mouse and rat neurons)
 - Not predictive
 - Donor variation
- Continuous cell lines (originally isolated from tumors)
 - Not normal
 - Not predictive
- Induced pluripotent stem cells (iPSCs; commercial or self-made)
 - Time and labor intensive
 - Often not validated for neural development

NPC-derived neurons

What is needed?

- Biologically relevant models
- Validated neural functioning
- Predictive for screening applications

NPC-derived neurons

Neural progenitor cells (NPCs) - Neuronal differentiation

Neural Progenitor Cells (NPCs) from ATCC

NPC-derived astrocytes

Value:

- Human models with no donor variation
- Live imaging is possible
- Cells exhibit full differentiation spectrum
- Complete system of cells and media will be available
 Key benefits:
 - More biologically relevant results/more predictive system
 - Markers allow for easy endpoint readout
 - Can differentiate to neuronal and glial cells
 - Easy to use and saves time

ATCC[®] NPC offerings

ATCC [®] No.	Designation
ACS-3003	NPC Growth Kit – <i>add to DMEM/F12</i>
ACS-3004	NPC Dopaminergic Differentiation Kit – add to DMEM/F12
ACS-5003	NPCs derived from ATCC-BXS0117 (ACS-1031)
ACS-5004	NPCs derived from ATCC-BYS0112 (ACS-1026)
ACS-5005	Neural Progenitor Cells derived from XCL-1 DCX-GFP (for late neuron differentiation)
ACS-5006	Neural Progenitor Cells derived from XCL-1 GFAP-Nanoluc [®] -Halotag [®] (for astrocyte differentiation)
ACS-5007	Neural Progenitor Cells derived from XCL-1 MAP2-Nanoluc [®] -Halotag [®] (for early neuron differentiation)
ACS-2103	Screening Fee – For Profit

ATCC[®] ACS-1026 – iPSC derived from bone marrow CD34+ cell from Caucasian male ATCC[®] ACS-1031 – iPSC derived from bone marrow CD34+ cell from Asian female

Reporter lines from iPSC derived from cord blood CD34+ from a Caucasian male (XL-1 iPSCs from NIH)

QC testing of ATCC[®] NPCs

- Post-thaw cell viability: >80%
- Post-thaw viable cell number: >1x10⁶ cells/vial
- Longevity: >15 PDLs or 5 passages
- NPC marker expression: Nestin⁺, Pax-6⁺, and Tra-I-60⁻
- Differentiation potential:
 - >70% Tuj1⁺ early neurons and
 - >10% TH⁺ dopaminergic neurons
- Identity: STR profile matching parental iPSC line
- Sterility, mycoplasma, and viral panel testing: None detected

NPC-derived oligodentrocytes

NPCs and Media

- Background information
- Differentiation potential of ATCC NPCs
- Toxicological studies
- Summary

ATCC NPCs express NPC markers but **not** iPSC markers

Dopaminergic neuron differentiation of NPCs

Tuj1

TH/DAPI

Astrocyte and oligodendrocyte differentiation

Astrocyte differentiation

.....

Parkinson's

Dopaminergic neuron differentiation of NPC reporter lines

MAP2- NanoLuc[®]-HaloTag[®] (ACS-5007) DCX-GFP (ACS-5005) GFAP-NanoLuc[®]-HaloTag[®] (ACS-5006)

Expression of the luciferase reporter during dopaminergic neuron or astrocyte differentiation

Luciferase secretion during dopaminergic neuron differentiation of NanoLuc[®]-HaloTag[®] NPCs

Luciferase secretion during astrocyte differentiation of GFAP-NanoLuc[®]- HaloTag[®] NPCs

Expression of the GFP or HaloTag[®] reporter during dopaminergic neuron or astrocyte differentiation

ATCC

16

Development of ATCC's NPC expansion and dopaminergic differentiation media

NPCs cultured in company A NPC expansion media (top row) or ATCC NPC Growth Kit (bottom row) for 3 passages prior to differentiation using ATCC's NPC Dopaminergic Differentiation Kit

ATCC [®] No.	Designation
ACS-3003	NPC Growth Kit
ACS-3004	NPC Dopaminergic Differentiation Kit

TH+DAPI

Expression of genes associated with the differentiation of NPCs

- TaqMan[®] primers were used to identify the presence of other types of neurons during dopaminergic neuron differentiation using ATCC[®] ACS-3004[™] media
- Dopaminergic neurons: TH, Nurr1, VMAT2, AADC
- Glutamatergic neurons: GLS2, vGLUT1,vGLUT2
- Gabaergic neurons: GABA (GABRB3)
- Motor neurons: EN1, LIM3, and Hb9
- Cholinergic neurons: ChAT

Early and dopaminergic neuron gene expression

Upregulation of early and dopaminergic neuron genes in ACS-5003 and ACS-5007 NPCs during dopaminergic neuron differentiation

NPC-derived dopaminergic neurons

Expression of early neuron genes (MAP2 and Tuj1) in ACS-5003 and ACS-5007 NPCs

Expression of dopaminergic neuron genes, TH and Nurr1

Expression of VMAT2 and DAT

Expression of AADC

Glutamatergic and GABAergic gene expression

Upregulation of glutamatergic and GABAergic neuron genes in ACS-5003 and ACS-5007 NPCs during dopaminergic neuron differentiation

NPC-derived neurons

Expression of GLS2, vGLUT2 and vGLUT1

T

Expression of GABA receptor B3 (GABRB3)

Motor and cholinergic gene expression

Upregulation of neuron genes in ACS-5003 and ACS-5007 NPCs during dopaminergic neuron differentiation:

- Motor
 - LIM3
 - Hb9
 - EN1
- Cholinergic
 - ChAT

NPC-derived dopaminergic neurons

Expression of LIM3 and Hb9

Expression of EN1 and ChAT

Protein expression

Confirmation of protein expression in ACS-5003 and ACS-5007 NPCs during dopaminergic differentiation by ICC

NPC-derived neurons

Confirmation of dopaminergic neuronal-specific protein expression during differentiation by ICC

Confirmation of glutamatergic neuron-specific protein expression during differentiation by ICC

ACS-5007

Confirmation of glutamatergic neuron-specific protein expression during differentiation by ICC

Confirmation of cholinergic neuron-specific protein expression during differentiation by ICC

Neural Progenitor Cells and Media

- Background information
- Differentiation potential of ATCC NPCs
- Toxicological studies
- Summary

NPC-derived astrocytes

Neurotoxicity studies

Neurotoxicity studies with ACS-5003 and ACS-5007 NPCs and NPCs-derived Neurons

- Resazurin viability
- High-content imaging assays

NPC-derived oligodendrocytes

Effect of amiodarone, chlorhexidine, and digoxin on cytotoxicity of ACS-5003 NPCs

Effect of paclitaxel, cisplatin, piperine, vincristine, and hydroxyurea on cytotoxicity of ACS-5003 NPCs, P8

Effect of paclitaxel, cisplatin, piperine, vincristine, and hydroxyurea on cytotoxicity of ACS-5003 NPCs, P7

Effect of paclitaxel, cisplatin, piperine, vincristine, and hydroxyurea on cytotoxicity of ACS-5007 NPCs, P10

ATCC

Effect of paclitaxel on cytotoxicity of ACS-5003 (P9) and ACS-5007 (P8) NPCs (n=12)

Effect of amiodarone, chlorhexidine, and digoxin on cytotoxicity of ACS-5003 and ACS-5007 NPC-derived neurons

Effect of paclitaxel, cisplatin, piperine, vincristine, and hydroxyurea on cytotoxicity of ACS-5007-derived neurons

Effect of amiodarone (10 μ M), chlorhexidine (10 μ M), paclitaxel (100 μ M), cisplatin (100 μ M), piperine (100 μ M), vincristine (100 μ M), and hydroxyurea (100 μ M) on ACS-5007 NPC-derived neurons

High content imaging analysis of in NPC-derived neurons stained with Calcein Green AM, and Hoechst 33342

High content imaging analysis of 10 μ M paclitaxel, cisplatin, and chlorhexidine in ACS-5003 and ACS-5007 NPC-derived neurons by using a CX7 imager

Neurotoxicity studies – ACS-5003

Toxin	ACS-5003	Neuron derived from ACS-5003
Amiodarone	Toxic	Toxic
Chlorhexidine	Toxic	Toxic
Digoxin	Toxic	Toxic
Cisplatin	Toxic	Resistant
Piperine	Resistant	Not tested
Vincristine	Toxic	Not tested
Hydroxyurea	Toxic	Not tested
Paclitaxel	Тохіс	Resistant

Neurotoxicity studies – ACS-5007

Toxin	ACS-5007	Neuron derived from ACS-5007
Amiodarone	Not tested	Toxic
Chlorhexidine	Not tested	Toxic
Digoxin	Not tested	Toxic
Cisplatin	Toxic	Resistant
Piperine	Resistant	Resistant
Vincristine	Toxic	Toxic
Hydroxyurea	Toxic	Toxic
Paclitaxel	Тохіс	Resistant

Neural Progenitor Cells and Media

- Background information
- Differentiation potential of ATCC NPCs
- Toxicological studies
- Summary

NPC-derived astrocytes

NPCs – Summary

- Cells and media with easy to use protocols
 - Expansion and Differentiation Medium
- Human model with no donor variation
 - Ability to expand and bank
- Differentiation across a wide spectrum of neural and glial lineages
 - Neurons
 - Astrocytes
 - Oligodendrocytes
- Live imaging of differentiation
 - GFP expression upon neural differentiation

NPC-derived neurons

NPCs – Summary

- Our studies demonstrated that ATCC NPCs have the potential to be differentiated into:
 - Dopaminergic neurons
 - GABAergic neurons
 - Glutamatergic neurons
 - Motor neurons
 - Cholinergic neurons

after treatment of NPCs with ATCC dopaminergic differentiation media

 ATCC NPCs and NPCs-derived neurons are suitable for drug screening applications

NPC-derived astrocytes

© 2015 American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise. NanoLuc[®], HaloTag[®] and Promega are registered trademarks or trademarks of Promega Corporation. TaqMan[®] is a registered trademark of Roche Molecular Systems, Inc.

NPC-derived astrocytes

Thank you for joining today!

Register for more ATCC "Excellence in Research" webinars, or watch recorded webinars, at www.atcc.org/webinars

August 4, 201612:00 PM ESTKevin Grady, Product Line Business Manager, ATCCGet Ready for a Better Angiogenesis Model

August 18, 2016
 12:00 PM EST
 Cara Wilder, Ph.D., *Technical Writer*, ATCC
 Improving the Detection of Shiga Toxin-producing
 Escherichia coli

questions to: tech@atcc.org

ATCC