Improving the Detection of Shiga Toxin-Producing *Escherichia coli* (STEC)

Cara Wilder, Ph.D. Technical Writer, ATCC August 18, 2016

About ATCC

- Founded in 1925, ATCC is a non-profit organization with headquarters in Manassas, VA
- World's premiere biological materials resource and standards development organization
- ATCC collaborates with and supports the scientific community with industry-standard biological products and innovative solutions
- Strong team of 400+ employees; over one third with advanced degrees

Established partner to global researchers and scientists

Certification and Accreditation

ISO 9001:2008 Certification for quality management system

 Demonstrates commitment to quality products, customer service, and continued improvement

ISO 13485:2003 Certification for the design, development, production, testing, and distribution of medical devices

 Applies to synthetic molecular standards, the HIV surveillance kit, and other diagnostic and research kits

ISO Guide 34:2009 accreditation for production

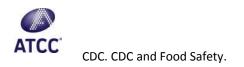
 Applies to Certified Reference Materials (CRMs)

ISO/IEC 17025:2005 accreditation for testing

 Applies to all ATCC cultures, derivatives, and bioproducts tested in our laboratories

FM 610678

Outline


- Foodborne illnesses
- Shiga toxin-producing Escherichia coli (STEC)
- Importance of food testing controls
- Toxigenic, non-toxigenic, and reporterlabeled STEC strains available at ATCC

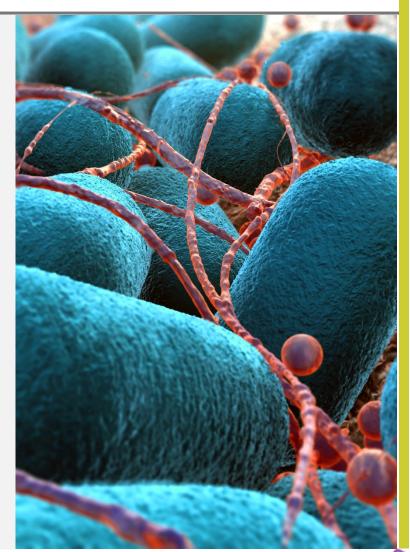
Foodborne Illnesses – A Common Problem

- Currently, there are more than 250 different foodborne diseases described that are caused by microbes or chemical substances
- Food can become contaminated through a number of routes, including:
 - Contact with the intestinal contents of food animals
 - Processing with contaminated water
 - Introduced by food handlers
 - Cross-contamination from other raw products

Foodborne Illnesses – A Public Health Threat

- 1 in 6 Americans get sick every year from the consumption of contaminated food or beverages
- Globally, foodborne illnesses are estimated to affect 600 million people and result in hundreds of thousands of deaths every year
- The CDC estimates that over 400,000 people are annually affected by antibiotic-resistant Salmonella or Campylobacter in the United States

Foodborne Illnesses – An Economic Burden


- Foodborne illnesses are estimated to cost the United States \$15.6 billion annually
- The Grocery Manufacturer's Association reports that recalls from the past five years have had an estimated financial impact of \$10-30 million per recall
- The CDC estimates that reducing foodborne infection by 10% would prevent 5 million Americans from getting sick each year

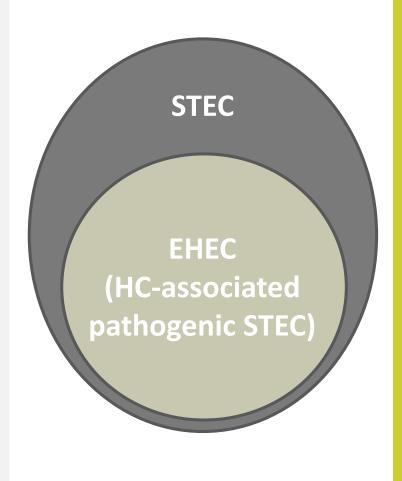
Escherichia coli

- Escherichia coli are Gram-negative facultative anaerobes that grown in the intestinal tract of animals
- Most strains of *E. coli* are harmless, but pathogenic strains do exist
 - Diarrhea
 - Urinary tract infection
 - Respiratory illness
 - Bloodstream infection

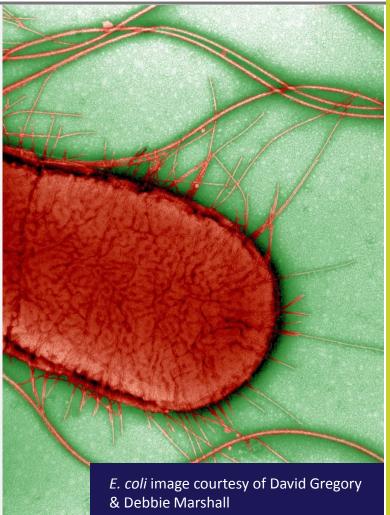
Pathogenic E. coli

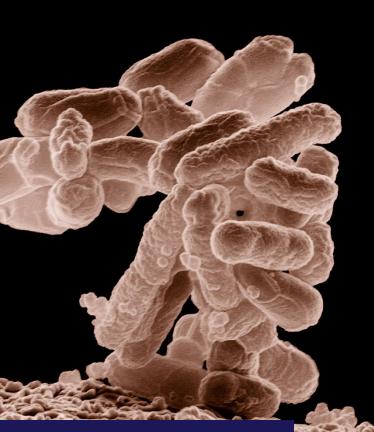
Characterized by major surface antigens

Serotype


- Somatic (O) antigen] Serogroup
- Flagellar (H) antigen
- There are six pathotypes:
 - Enterotoxigenic *E. coli* (ETEC)
 - Enteroaggregative *E. coli* (EAEC)
 - Enteropathogenic E. coli (EPEC)
 - Enteroinvasive E. coli (EIEC)
 - Diffusely adherent *E. coli* (DAEC)
 - Enterohemorrhagic E. coli (EHEC)

Shiga Toxin-producing *E. coli* (STEC)


- Multiple names
 - Enterohemorrhagic *E. coli* (EHEC)
 - Verocytotoxin-producing *E. coli* (VTEC)
 - Shiga toxin-producing *E. coli* (STEC)
- >400 serotypes (O:H types) of STEC associated with human disease
- *E. coli* O157:H7 is the prototypical STEC

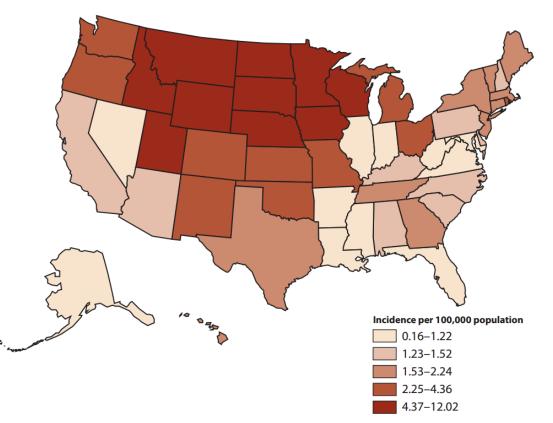


Shiga Toxin-producing *E. coli* (STEC)

- Estimated **265,000** foodborne associated illnesses and **3,600** hospitalizations in the United States each year
 - *E. coli* O157:H7 accounts for about **36%** of STEC infections
 - ~5-10% of diagnosed infections develop into hemolytic uremic syndrome, a lifethreatening complication that can cause permanent health damage

Shiga Toxin-producing *E. coli* (STEC)

E. coli image courtesy of Eric Erbe and Christopher Pooley


Gene(s)	Virulence Factor
stx1, stx2	Shiga toxin
eae	Intimin
hlyA	Enterohemolysin
katP	Bifunctional catalase peroxidase
espP	Secreted serine protease
<i>etpD</i> cluster	Type II secretion pathway
Novel adhesion factors	Saa, Iha, Eaf1, LPF

National Enteric Disease Surveillance: STEC Surveillance Overview.

Prevalence of STEC Strains

Incidence rate of STEC infection reported to CDC, United States, 2012 (n=6,506)

Laboratory-confirmed STEC infections reported to CDC, by serogroup, United States, 2012 (n=4756)			
Serogroup	Number Reported	Percent	
0157	2460	51.7%	
O26	655	13.8%	
0103	568	11.9%	
0111	365	7.7%	
0121	163	3.4%	
O45	120	2.5%	

109

38

28

24

226

0145

0118

0186

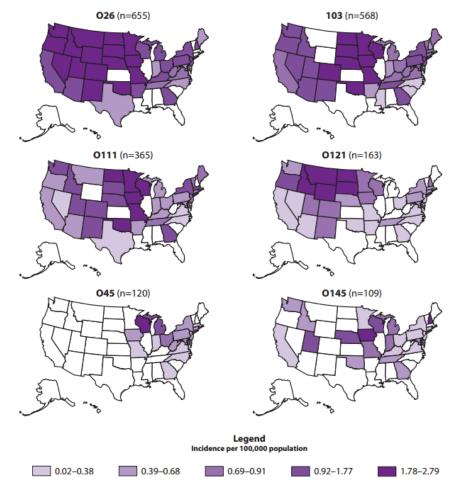
05

All others

Image and information adapted from National Enteric Disease Surveillance: Shiga toxin-producing Escherichia coli (STEC) Annual Summary, 2012

2.3%

0.8%

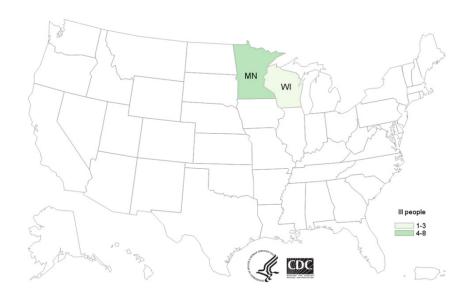

0.6%

0.5%

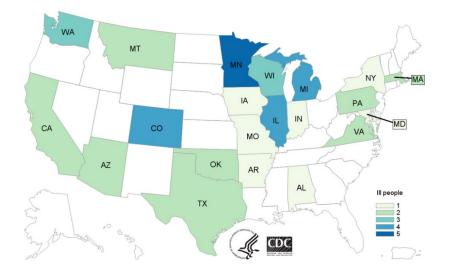
4.8%

Prevalence of STEC Strains

Incidence rate of laboratory-confirmed top 6 non-O157 STEC serogroups reported to CDC, United States, 2012 (n=1,980)



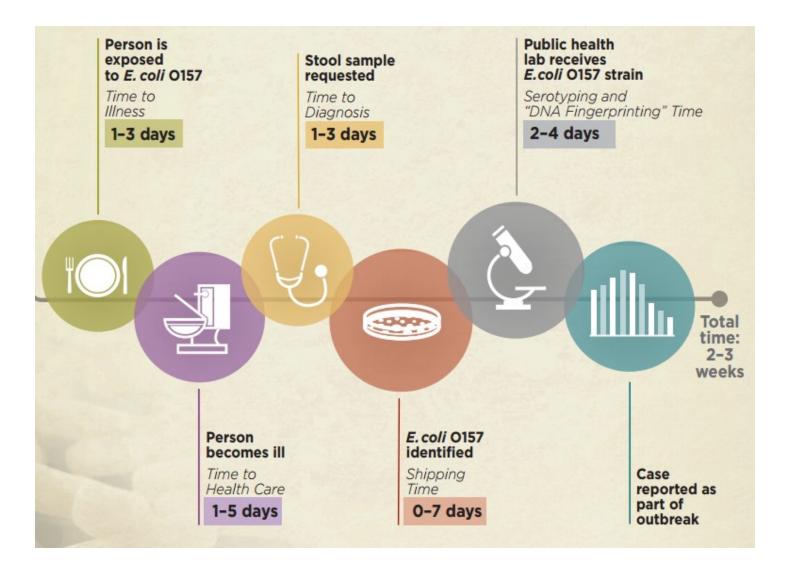
Laboratory-confirmed STEC infections reported to CDC, by serogroup, United States, 2012 (n=4756)			
Serogroup	Number Reported	Percent	
0157	2460	51.7%	
O26	655	13.8%	
0103	568	11.9%	
0111	365	7.7%	
0121	163	3.4%	
O45	120	2.5%	
0145	109	2.3%	
0118	38	0.8%	
O186	28	0.6%	
05	24	0.5%	
All others	226	4.8%	


Image and information adapted from National Enteric Disease Surveillance: Shiga toxin-producing Escherichia coli (STEC) Annual Summary, 2012

Recent STEC Outbreaks - 2016

Multistate outbreak of STEC O157 infections
linked to alfalfa sprouts as of March 22, 2016

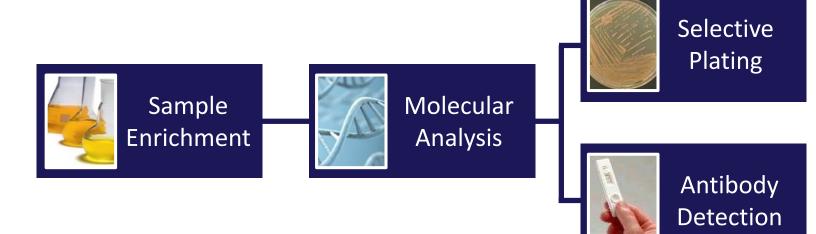
Case count	11
States	2
Deaths	0
Hospitalizations	2



Multistate outbreak of STEC O121 infections linked to flour as of July 25, 2016

Case count	46
States	21
Deaths	0
Hospitalizations	13

Timeline for Reporting Cases


CDC. Timeline for Reporting Cases of E. coli O157 Infection.

Updated Food Safety Regulations

- In 2011, the United States Department of Agriculture (USDA) announced that it was going to ban the sale of any non-intact raw beef trimmings tainted with the Big-Six serogroups
- USDA Guidance:

Detection and Isolation of non-O157 Shiga Toxin-Producing *Escherichia coli* (STEC) from Meat Products

MLG 5B.05

Importance of Food Testing Controls

- Reference materials are needed to evaluate products, raw materials, and associated equipment for microbial contamination from farm to fork
 - Quality control testing procedures
 - Process validation
 - Development of novel testing methods
- Protect consumer safety
- Protect brand reputation and prevent costly recalls

ATCC Food Testing Reference Strains

- High-quality reference strains are needed for the routine testing of food products
- ATCC strains are backed by meticulous laboratory procedures to ensure viability, identity, and purity
- ATCC reference strains are frequently cited in published laboratory methods used by industry:
 - AOAC International
 - US Food and Drug Administration (BAM)
 - British Standards Institution
 - International Organization for Standardization (ISO)
 - Japanese Industrial Standards (JIS)

Search for strains at <u>www.atcc.org/food</u>

ATCC Food Testing Resources

ATCC STEC Strains and Microbial Panels

- ATCC offers 50+ STEC strains representing *E. coli* O157 and the Big-Six
- Non-toxigenic strains are available and can be shipped internationally
- Strains were validated for serotype and the presence or absence of Shiga toxin (*stx1* and *stx2*) and intimin (*eaeA*) genes

ATCC®	Description	Number of Vials	BSL
MP-9™	Big-Six Escherichia coli Strains Panel	6	2
MP-10™	Big-Six Escherichia coli Genomic DNA Panel	6	1
MP-20™	Big-Six Non-Toxigenic Escherichia coli Strains Panel	6	2
MP-21™	Big-Six Escherichia coli NanoLuc® Strains Panel	6	2

Big-Six E. coli Strains Panel

- Comprises six of the Big-Six non-O157 STEC serogroup strains
- Strains are tested for serotype and the presence of the Shiga toxin (*stx1* and *stx2*) and intimin (*eaeA*) genes

ATCC[®] MP-9™

ATCC [®] No.	Strain	Serotype	Virulence Genes	Isolation
BAA-2196™	2003-3014	O26:H11	stx1+/stx2+/eae+	Michigan
BAA-2193™	2000-3039	O45:H2	stx1+/stx2-/eae+	Main
BAA-2215™	2006-3008	O103:H11	stx1+/stx2-/eae+	Idaho
BAA-2440™	0111	0111	stx1+/stx2+/eae+	Unknown
BAA-2219™	2002-3211	O121:H19	stx1-/stx2+/eae+	Virginia
BAA-2192™	99-3311	0145	stx1+/stx2+/eae+	South Dakota

Big-Six E. coli Genomic DNA Panel

- Comprises six of the Big-Six non-O157 STEC serogroups genomic DNA
- Parent strain for each preparation was tested for serotype and the presence of the Shiga toxin (*stx1* and *stx2*) and intimin (*eaeA*) genes

ATCC[®] MP-10[™]

ATCC [®] No.	Strain	Serotype	Virulence Genes	Isolation
BAA-2196D-5™	2003-3014	O26:H11	stx1+/stx2+/eae+	Michigan
BAA-2193D-5™	2000-3039	O45:H2	stx1+/stx2-/eae+	Main
BAA-2215D-5™	2006-3008	O103:H11	stx1+/stx2-/eae+	Idaho
BAA-2440D-5™	0111	0111	stx1+/stx2+/eae+	Unknown
BAA-2219D-5™	2002-3211	O121:H19	stx1-/stx2+/eae+	Virginia
BAA-2192D-5™	99-3311	0145	stx1+/stx2+/eae+	South Dakota

Quantitative STEC Nucleic Acids

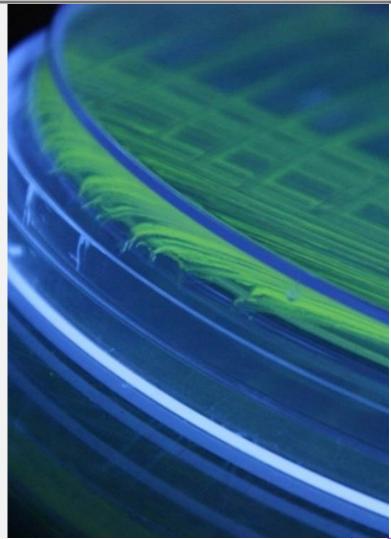
- Genomic DNA quantitated using Droplet Digital[™] PCR
- Ideal for use in assay development and validation, and monitoring of day-today test variation and lot-to-lot performance of molecular-based assays
- Quantitative format allows for the generation of a standard curve for qPCR

ATCC [®] No.	Strain	Serotype	Virulence Genes	Isolation
BAA-2196DQ™	2003-3014	O26:H11	stx1+/stx2+/eae+	Michigan
BAA-2193DQ™	2000-3039	O45:H2	stx1+/stx2-/eae+	Main
BAA-2215DQ™	2006-3008	O103:H11	stx1+/stx2-/eae+	Idaho
BAA-2440DQ™	0111	0111	stx1+/stx2+/eae+	Unknown
BAA-2192DQ™	99-3311	0145	stx1+/stx2+/eae+	South Dakota
BAA-2326DQ™	TY-2482	O104:H4	stx2+/aggR+	Germany

Non-toxigenic Big-Six non-O157 E. coli

- Comprises six non-toxigenic strains representing the Big-Six serogroups
- Each strain has been tested by ATCC for serotype and the presence/absence of the Shiga toxin (*stx1* and *stx2*) and intimin (*eaeA*) genes
- Can be shipped internationally

ATCC [®] No.	Strain	Serotype	Virulence Genes
29552™	CDC 3250-76*	O111a,111b:K58:H21	stx1-/stx2-/eae-
BAA-2190™	98-3306	0121	stx1-/stx2-/eae-
BAA-2212™	2003-3055	O26:H4	stx1-/stx2-/eae-
BAA-2214™	2005-3342	O103	stx1-/stx2-/eae-
BAA-2216™	99-3071	O145:H34	stx1-/stx2-/eae+
BAA-2649™	04-3529	O45:H10	stx1-/stx2-/eae-


ATCC[®] MP-20[™]

*Positive for the CVD432 and aggR genes, markers for Enteroaggregative E. coli

Reporter-labeled Strains for Food Testing

- Use of bacterial strains as positive controls in testing protocols is not widely practiced for fear of cross-contaminating samples
- Control strains with unique, easily detectable traits that distinguish positive control strains from actual food contaminants are needed
- Initial studies demonstrated the use of GFPand firefly luciferase-labeled positive controls in monitoring microbial growth, survival, and colonization under various conditions

GFP Strains for Food Testing

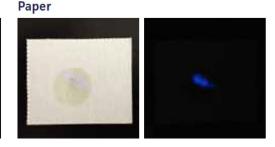
- Created using a synthetic GFP construct that does not have licensing fees
- Easily detected using a UV wand or transillumintor
- No additional substrates or buffers required

ATCC [®] No.*	Serotype	Virulence Genes
BAA-2196GFP™	O26:H11	stx1+/stx2+/eae+
BAA-2215GFP™	O103:H11	stx1+/stx2-/eae+
BAA-2209GFP™	0111	stx1+/stx2+/eae+
BAA-2219GFP™	O121:H19	stx1-/stx2+/eae+
35150GFP™	O157:H7	stx1+/stx2+/eae+
51657GFP™	O157:H7	stx1+/stx2+/eae+

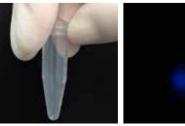
*Strains will be available October 2016

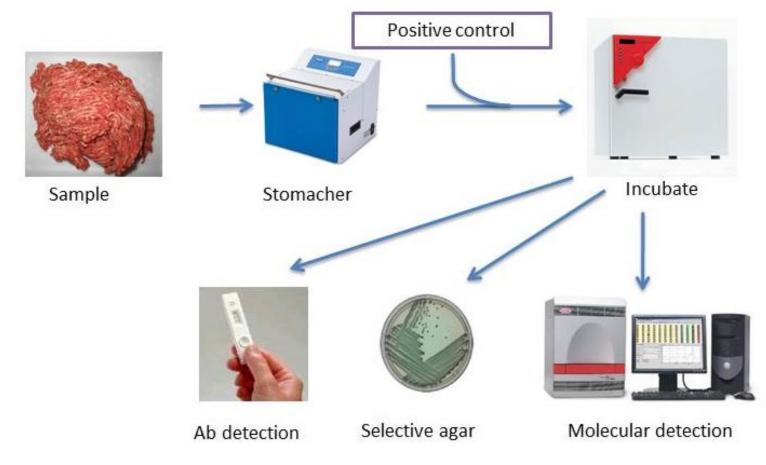
Big-Six Escherichia coli NanoLuc® Strains Panel

- Comprises six luciferase-labeled Big-Six non-O157 STEC serogroups
- Intensely bright reporter that produces a glow response
- Portable system; does not require additional instrumentation


ATCC [®] No.	Serotype	Virulence Genes	
BAA-2580-PACK™	O26:H11	stx1+/stx2+/eae+	
BAA-2581-PACK™	O45:H2	stx1+/stx2-/eae+	
BAA-2582-PACK™	O103:H111	stx1+/stx2-/eae+	
BAA-2583-PACK™	0111	stx1+/stx2-/eae+	
BAA-2584-PACK™	O121:H19	stx1-/stx2+/eae+	
BAA-2585-PACK™	O145	stx1-/stx2+/eae+	

ATCC[®] MP-21[™]


Cotton Swab

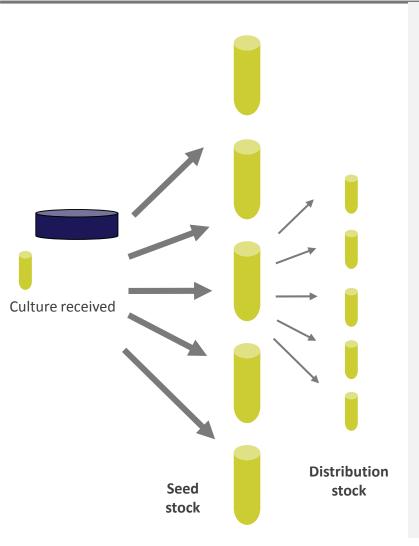


Broth

Detection of STEC Strains in Meat

Labeled controls rule out cross-contamination of samples with the control strain

Non-pathogenic E. coli Surrogate Indicators Panel


- Non-toxigenic, can be used in BSL 1 environments
- Recommended by the USDA FSIS for safely measuring changes in microbial counts during validation studies
- Validation applications include beef carcass intervention, beef processing, and selected antimicrobial treatments for *E. coli* O157:H7 or *S. enterica*

ATCC [®] No.	Strain	О Туре	Н Туре	Isolation
BAA-1427™	P1	-	4	Cattle hides
BAA-1428™	Р3	154	-	Cattle hides
BAA-1429™	Р8	-	34	Cattle hides
BAA-1430™	P14	85	34	Cattle hides
BAA-1431™	P68	106	12	Cattle hides

ATCC[®] MP-26™

Production

- Preserved cultures remain as close as possible to the original culture
- Seed stock is archived for future replenishment
- Distribution stock are used for distribution
- Authentication compares:
 - Seed, Distribution, Initial culture

Microbial Strain Authentication

ATCC uses a variety of methods to ensure identity, viability, and purity

- Phenotypic analysis
- Genotypic analysis
- Functional analysis

No single method of identification is sufficient

STEC Authentication at ATCC

- Bacterial identification
 - VITEK[®] 2, VITEK[®] MS, API[®] Strips, 16S rRNA sequencing
- Molecular characterization
 - PCR (*stx*1, *stx*2, and *eaeA*)
- Serotype identification
 - Agglutination
 - Immunoprecipitation assay



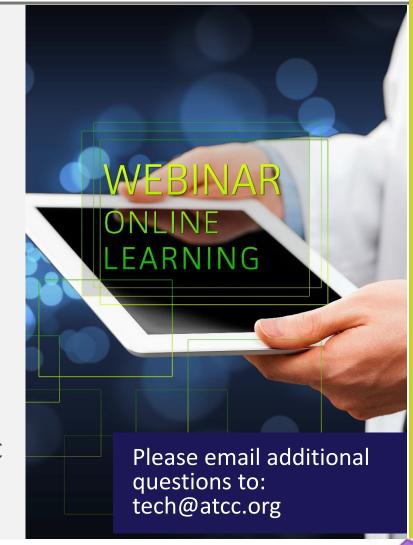
Conclusion

- Foodborne illnesses pose a significant health and economic burden associated with severe illness and death, healthcare cost, productivity losses, product recalls, disease surveillance, and outbreak response
- STEC strains cause a number of foodborne illnesses and related hospitalizations
- STEC O157 and the Big-Six serogroups have been frequently associated with foodborne outbreaks
- ATCC offers a number of STEC strains, nucleic acids, microbial panels, and reporter-labeled strains that support food safety testing
- ATCC STEC strains are highly characterized and authenticated, and have been evaluated for serotype and the presence/absence of relevant virulence genes

Disclaimers

© 2016 American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise. Droplet Digital[™] is a trademark of Bio-Rad. NanoLuc[®] is a registered trademark of Promega Corporation. VITEK[®] and API[®] are registered trademarks of bioMérieux.

Thank you for joining today!


Register for more ATCC "Excellence in Research" webinars, or watch recorded webinars, at <u>www.atcc.org/webinars</u>

September 15, 2016 12:00 PM ET

Brian Cantwell, Ph.D., *Scientist*, ATCC Finding your perfect match – Evolving technologies for bacterial strain typing

September 22, 2016 12:00 PM ET

Fang Tian, Ph.D., *Lead Scientist*, ATCC Cindy Long, *Product Line Business Manager*, ATCC ATCC quantitative nucleic acids – Empowering molecular-based assay development

