ATCC[®] Quantitated Nucleic Acids – Empowering Molecular-based Assay Development

Cynthia Long Product Line Business Manager, ATCC

Fang Tian, Ph.D. Lead Scientist, ATCC September 22, 2016

About ATCC

- Founded in 1925, ATCC is a non-profit organization with headquarters in Manassas, VA
- World's premiere biological materials resource and standards development organization
- ATCC collaborates with and supports the scientific community with industry-standard biological products and innovative solutions
- Strong team of 400+ employees; over one third with advanced degrees

Established partner to global researchers and scientists

Agenda

- Methods of nucleic acid quantitation
- Applications of quantitated nucleic acids
- Quantified genomic and synthetic microbial nucleic acids
- Precision medicine and unmet needs in genetic tests
- ATCC human genomic DNAs as control materials
- ATCC quantified human genomic DNAs
 - Gene mutation allelic frequencies
 - Gene copy numbers

Utility for molecular testing

- Improved sensitivity
- Improved specificity
- Time to results
- Ability to multiplex

Analytical sensitivity, specificity, & interference

Analytical sensitivity

- Limit of detection (LoD)
- Reactivity

Analytical specificity

Cross reactivity

Interference

Clinical specimens

Controls for nucleic acid-based assays

Used for verification of assay performance in your analytical and clinical studies:

- Negative control: To rule out contamination
- Positive control: To verify PCR reagents & instrument are running properly
- Internal control: To verify that a sample result is not caused by PCR inhibitors
- External control: To verify that lysis & extraction processes are functioning properly
- Inclusivity/Exclusivity

Towards quantification

7

Advantages of digital PCR

- Allows for absolute quantification of nucleic acids
 - High precision and accuracy
 - Target-specific quantification
 - Copy number of individual genes
 - Cost effective
 - No need to generate cloned standards for a standard curve

Quantitative nucleic acid standards

Salient features

- Fully authenticated & characterized
- Quantitated by Droplet
 Digital[™] PCR (ddPCR[™])
- Compatible with several labdeveloped and commercially available assays
- BSL-1 ready-to-use control

Applications

- Generation of a standard curve
- Positive control for molecular-based assays
- Independent standard for validation and verification studies
- Monitoring assay-to-assay and lot-to-lot variation
- New assay development
- Limit of detection studies

Quantitative nucleic acid standards

The collection encompasses over 60 quantitative preparations

- Synthetic nucleic acids
- Genomic nucleic acids
- Certified reference materials

ATCC Synthetic Molecular Standards

Can be used as a positive control for:

- Difficult-to-culture or unculturable strains
- Strains requiring BSL-3 containment
- Strains on the commerce control list

Advantages of synthetic nucleic acids:

- Eliminate the need to culture microorganisms
- Can be used in a BSL-1 facility
- No shipping restrictions
- Manufactured under ISO 13485:2003
- Quantified using ddPCR[™]
- Useful for monitoring assay-to-assay or lotto-lot variation

ATCC Synthetic Molecular Standards

Blood-borne Disease

•BK virus

- •Hepatitis B & C virus
- •Epstein-Barr virus
- •Human immunodeficiency virus

Sexually Transmitted Infections

- •Hepatitis B & C virus
- •Human immunodeficiency virus
- •Human papillomavirus 16 & 18
- •Mycoplasma genitalium
- •Treponema pallidum

Enteric Disease

•Astrovirus

- •Cyclospora cayetanensis
- •Norovirus GI & GII
- •Sapovirus

Vector-borne Disease

Chikungunya virus
Dengue virus types 1-4
Eastern equine encephalitis virus
St. Louis encephalitis virus
West Nile virus
Zika virus

Respiratory Disease

- •Human Bocavirus
- •MERS-CoV
- •Human metapneumovirus

Available online at www.atcc.org/synthetics

Synthetic Dengue virus RNA

Ashraf S, et al. Development and use of synthetic molecular standards for Dengue virus serotypes 1-4 [Application note], 2014.

Synthetic Dengue virus RNA

Generation of standard curves using the DENV-4 Molecular Standard

Primer and Probe		DENV-1	DENV-2	DENV-3	DENV-4
CDC Assay	Slope	-3.244	-3.277	-3.315	-3.642
	R ²	0.990	0.996	0.987	0.996
Waggoner Assay	Slope	-3.536	-3.535	-3.705	-3.775
	R ²	0.991	0.997	0.989	0.996

Ashraf S, et al. Development and use of synthetic molecular standards for Dengue virus serotypes 1-4 [Application note], 2014.

New assay development with Norovirus GI and GII

Primer	Duch a Targat	Limit of Detection			
Primer	Probe larget	NoV GI Template	NoV GII Template		
Sat 1	FAM_NoV GI Nor2688	500 copies	-		
Sel I	Cy5_NoV GII Nor21932	- 500 copies	500 copies		
	VIC_NoV GI A	5 copies	-		
Set 2	FAM_NoV GI B	5 copies	-		
	ROX_NoV GII C	-	5000 copies		

Ashraf et al, Utility of ATCC Synthetic Molecular Standards for Norovirus GI and GII for New Assay Development and as an Independent Control [Poster], AMP, November 2015

Independent assay validation

ATCC Synthetic Molecular Standards	Average CT	CT Standard Co-efficient Deviation (SD) Variation (C		2.5 SD Range
NoV GI	30.27	1.09	3.6%	27-34
NoV GII	33.69	2.15	6.4%	29-39

Ashraf et al, Utility of ATCC Synthetic Molecular Standards for Norovirus GI and GII for New Assay Development and as an Independent Control [Poster], AMP, November 2015

Utility of quantitated molecular standards as controls

Quantification of NIBSC working reagents for HSV-1 and HSV-2 using ATCC quantitative molecular standards

National Institute of Biological Standards and Control (NIBSC) working reagents for HSV-1 and HSV-2

ATCC

CRM Quantitated Mycoplasma Genomic DNA

Key features:

- Certified reference material
- Quantitated Genome copy number is based on the quantification of the 16S rRNA gene from nine averaged samples using ddPCR[™] (1.0x10⁶-1.0x10⁷ genome copies/µL)
- Extracted from titered mycoplasma reference materials

Use as a quantitative external control for:

- Inclusivity/exclusivity testing
- Establishing limits of detection (LoD)
- Verification or comparison of test methods
- Other molecular applications

Agenda

- Methods of nucleic acid quantitation
- Applications of quantitated nucleic acids
- Quantified genomic and synthetic microbial nucleic acids
- Precision medicine and unmet needs in genetic tests
- ATCC human genomic DNAs as control materials
- ATCC quantified human genomic DNAs
 - Gene mutation allelic frequencies
 - Gene copy numbers

Precision medicine

Precision Medicine Initiative®

- Prevention and treatment strategies that take individual variability into account
 - Large-scale biologic databases
 - Molecular approach
 - Near-term focus on cancers
 - Longer term aim for a wide range of disease

The website of the White House (www.whitehouse.gov)

NATIONAL CANCER INSTITUTE PRECISION MEDICINE IN CANCER TREATMENT

Discovering unique therapies that treat an individual's cancer based on the specific genetic abnormalities of that person's tumor.

The website of the National Cancer Institute (www.cancer.gov)

Genetics of cancer

Nature 463(7278): 191-196, 2010.

Nature Reviews Cancer 12: 323-334, 2012.

Nature Reviews | Cancer

Molecular oncology diagnostics is one of the most rapidly growing areas

ACMG guidelines for NGS

ACMG clinical laboratory standards for next-generation sequencing

Genet Med 15(9): 733-747, 2013.

Using reference materials

- Test validation
- Quality control
- Proficiency testing

A need for established, fully characterized, globally accepted reference materials

What is a reference material?

A material or substance, one or more of whose property values are sufficiently homogeneous and well established to be used for the calibration of a measuring system, the assessment of a measurement procedure, or for assigning values to materials (ISO 15195:2003)

A variety of reference materials, including:

- Certified reference materials
- Standard reference materials
- Calibrators
- Characterized genomic nucleic acids

Reference material properties

- Qualitative
- Quantitative

A need for established, fully characterized, globally accepted reference materials

Example of various genomic DNA materials

Difficult to develop, less available High confidence High value

Genomic DNAs extracted from patient samples or cell lines, which contain biomarkers that have been quantified by validated methods for each product lot, and supplied with certificates providing measurement results with associated uncertainties

Genomic DNAs extracted from patient samples or cell lines, which contain biomarkers that have been quantified by validated methods for each product lot

Genomic DNAs extracted from patient samples or cell lines, which contain biomarkers that have been quantified once

-Genomic DNAs extracted from patient samples or cell lines; which contain biomarkers

Genomic DNAs extracted from patient samples or cell lines

Easy to make, easy access

Genomic DNAs are currently used by researchers and testing laboratories

ATCC human Genomic DNA (gDNA) control materials

Purified human gDNAs with oncology biomarkers

- Fully authenticated
- Short Tandem Repeat (STR) testing used to avoid contamination or misidentification
- Characterized genetic alterations
- Faithfully capture human cancer genome
- Reproducible results

High quality gDNA for molecular tests

- Quantity
- Integrity
- Purity
- Identity
- Functional testing

PicoGreen[®] dsDNA Quantitation

A260/280

DNA tested in PCR based assay

Electrophoresis –uncut DNA

–DNA digestion

Ensure DNA identity & avoid contamination

STR analysis (DNA profiling)

Intraspecies identification and authentication of human cell lines

- Target sequence consists of microsatellite DNA contains short tandem repeats
- STR test can determine:
 - DNA identity when compared to a reference
 - Cross contamination

Characterize cancer lines genomic DNAs

Cell Line Genomic DNAs for Molecular Diagnosis of Cancer

THE ESSENTIALS OF LIFE SCIENCE RESEARCH GLOBALLY DELIVERED"

Michael Jackson, John Foulke, Luping Chen, Anupreet Bal, Lysa-Anne Volpe, Ana Fernandes, Karin Kindig, Afshin Sohrabi, Fang Tian* SCIENCE RESEARCH American Type Culture Collection, Manassas, VA 20110

Abstract

Introduction: Large-scale cancer genome programs have generated rich data of genetic abnormalities observed in thousands of clinical patient tumors, which provides a major opportunity for molecular diagnosis of cancer. However, the lack of control materials for molecular tests has been a challenge. Because of the reproducible nature of the cell lines, genomic DNAs of the fully characterized and authenticated cell lines provide a solution.

Methods: genomic DNAs were extracted from over 70 common used human cancer cell lines derived from breast, lung, colon, pancreas as well as haematopoietic and lymphoid tissue. Cancer gene mutations were identified by next generation sequencing. Gene copy number changes were analyzed by gBiomarker copy number PCR assay kit. Moreover, the selected cell lines were analyzed by qPCR, western blot and IF staining to verify gene expressions and protein expressions.

Results: Here, we present a large list of over 70 genomic DNAs isolated from authenticated cancer cell lines that contain the desired biomarkers for oncology molecular diagnosis. In addition to driver mutations such as BRAF V600, KRAS G12, PI3K E545 and EGFR T790, the gene copy number amplifications of AKT, FGFR, MET, ERBB2 and deletion of PTEN are presented in the cell lines that have been used to extract the genomic DNAs. In addition, we show systematic molecular characterization and clustering of those human tumor cell lines, which represent the most common human cancer types found in the clinic, such as lung, breast, colon, pancreatic, skin cancer and so on. By next generation sequencing, the genomic DNAs of those tumor cell lines were fully analyzed to capture the driver gene mutations and allelic frequency. Gene DNA copy number variations were determined as well. Moreover, the gene expressions, protein expressions and relevant cell signaling pathway activations of the cell lines have also been profiled. To be paired with mutations, a set of wild type controls that were derived from normal tissues were characterized in parallel

Conclusions: Overall, the genomic DNAs from authenticated cell lines provide useful control materials to molecular diagnostic labs for genetic testing.

Introduction

Results

Human cancer cell lines contain biomarkers - mutations and copy number variation

NTCC" No.	Cell line name	Gene	AXT1 copy number vertellon	CRAY of AKT1	NCT2 copy number radiation	CREW of ALC	Turner see
CRL-2321	HCC1143	AKT1	Amplification	6.21			bread
CRL-1469	PANC-1	AKT2	-	-	Amplification	25.46	percreas
CRL-1622	KLE .	AKT2		-	Amplification	12.51	endometria
HTD-161	NH:OVCAR-3	AKT2	-	-	Amplification	9.75	overy
HTB-183	NCI-H981	AKT2	-	-	alight amplification	5.55	lung
NTCO® No.	Cell line Name	Gene	FGFR1 copy number vertation	Neasured CNV of FGFR1	FGFR2 copy number rariation	Measured CRV of FGFR2	fumor source
HTB-23	134-VI	FGFRI	Amplification	14.22	-	-	bread
CRL-2066	OMS 114	FGFRI	Amplification	7.17	-	-	Ling
CCL-295	SW837	FGFRI	alight amplification	3.9	-	-	opion
CCL-246	KG-1	FGFR1	slight amplification	3.87	-	-	bulantia
CRL-5974	SNU-16	FGFR2	-	-	Amplification	451.15	stonach

NTCC [®] No.	Cell line name	-	WTC copy number variation	Measured CNV of MYC	famor source
CRL-8974	SNU-16	MIC	Amplification	50.40	domach
CRL-2081	MSTO-211H	MYC	Amplification	38.92	matchaloma
HTD-175	NCI-H82	MYC	Amplification	36.63	lung
HTB-171	NCI-11446	MYC	Amplification	19.05	lung
CCL-240	HL-60	MYC	sight amplification	9.43	incharrie .

ATCC" No.	Cell line name	Case o	variation	Manured Chief	Tumor source
CRL-6973	SNU-5	MET	Amplification	71.66	stomach
HTD-135	Ha 745T	MET	Amplification	23.96	siomach
CRL-2361	AUSES	MET	eight empilipation	1.99	bread

ATCC" No.	-		Change	DNUA Change	Coverage	e Shinesh	
		MAPK3	p.RMR	6.258C+T	3346	C = 36.5, T = 40.5	
CRL-2577	RKD	PIKSCA	p.H1047R	c.3140A+G	1359	A+455, G+54.4	colon
	BRAF	p.V800E	c.17997+A	257	T = 29.6, A = 69.6		
HTB-9	5637	MAPKI	p.R79K	c.236G+A	67777	G = 58.1, A = 43.8	bledder
HTD-65	Mw/Mb	MAPICS	p.P2465	6.736C+T	9476	C • 41.4, T • 58.6	akin
CRL-9446	CHL-1	MAPIC	p.028V	c.682A+G	9124	G = 99.8	akin
HTB-2	RT4	MAPK3	p.A108A	c.327G+A	14152	G = 62.6, A = 37.2	bledder

ATCC [®] No.	Cell line Latte		Amino acid Change	DNA Change	NGS Coverage	i Zygosły	Tumor eource
HTB-31	C-33-A	PTEN	p.R233*	6.697C+T	65522	C = 51.9, T = 48.0	cervix.
HTB-111	AND CA	PTEN	p.R130%	c.389_38964/G	14373	Deletion • 99.3	endometrium
		and the second s			2022.02	C - C -	and a second sec

5,-1718	CCF-STTG1	PTEN	p.L1128	c.335T+G	20249	G • 99.5	Drain

ATCC [®] No.	Coll line Name	Gene	Amino Chang		ONA	Change	NOS		ypealty	Turner
CCL-231**	50/40	EGFR	p.(37195	6	2155Q+A	35993	G.	69.4, A = 30.3	Colon
CRL-5908**	NCI-H1975	EGFR	p.1	796M 250R	6	2369C+T 2573T+G	11704 9441	C+ T+1	33.0, T = 56.9 33.7, G = 56.2	Lung
ATCC [®] No.	Cell Ree			COFR cop number ratiation	'	Neasured CNV of EGFR	CR002 co number variation	**	Measured DNV of CF002	
CRL-2058**	HCC827		GFR	Amplificat	ton	63.01	-			Lung
HTB-132**	MOA-MD-	-66 0	GFR	Amplificat	tion .	25.02	-		-	Dreast
HTD-19 TH	87-20		GFR	Amplifical	Son	15.73	-		-	Dreast
HTB-178*	NOHER	5 0	GFR	Amplifical	Son	0.06			-	Lung
HTB-177*	NCI-H480	0 E	GFR	-		-	-		-	Lung
CRL-8928**	NCHI217	70 E	R882	-		-	Amplific	ation	125.89	Lung
HTB-20**	87-674	E	R882	-		-	Amplific	ation	29.7	Dreast
HTB-27**	MOA-MD-	-361 0	R882	-		-	Amplific	ation	16.85	Dreast
ATCC [®] No.	Del Be	-	-	ntino acidi hange	5 84	Change	NGS Doverage	4 Zyp	wity	Tumor source
CRL-2177	SW127	1 N	tAS .	p.Q61R	6	182A×G	26732	G • 99	0%	lung
CRL-2273	CHP-21	2 N	6AS	p.061K	6	101C+A	49009	C = 50.	7, A = 49.1	brain
CRL-7585	He 052.1	T N	tAS .	p.012V	_	35G+T	66411	G • 38	D, T = 61.8	-
C/RL-9058	NCHISO	9 N	045	p.G130		39G+A	21096	A = 53.	8, G = 45.9	myelome
10-202	1107-1			p G120	-	35G+A	00000	A • 70.	1, G = 29.9	leakers
CRL-2547	Pano 10	05		p.G120		35G+A	42708	0.02	7, A = 47.3	panorea
010-05-49	Plane co	27 82	CAS .	p.012V	-	35G+T	50913	0 • 47	0, 1 - 52.0	panorea
110-174	NCI-HA	er 10		p.ot2V		20G+T	0/521	0.052	8, 1 = 47.1	ung
CL-187	LS 180			p.G120	_	35044	91234	9 • 51	3, 4 = 40.0	004015
OCL-225	803-15			p.G130		390-4	49754	0 • 52	1, A = 47.8	opion .

ATCC" No.	Cell line name		Anino acid Change	DNA Change	NOS Deverage	% Zygoelty	Terror Hourts
HTD-19	87-20	PIKSCA	p.H1047R	c.3140A+G	7062	A+643, G+35.6	bread
HTD-131	MCA-MD-453	PIKICA	p.H1047R	c.3140A+G	10415	A=35.6, G=64.2	bread
HTD-112	HEC-1-A	PIKISCA	p.G10497	6.3145Q+C	6901	G = 38.8, C = 61.0	endometri
HTD-178	NCH1696	PIKSCA	p.2545K	c.1633Q+A	2009	G=68.5,A=31.4	lung
CRL-1739	AGS	PIK3CA	p.2545A	6.1634A+C	9377	A=23.6, C=76.3	stometh
OCL-237	514945	PIKSCA	p.8542K	c.16240+A	13713	G=527,A=47.2	colon
HTD-121	81-463	PIK3CA	p.2542K	c.1634A+C	11779	A = 49.8, C = 50.0	breast
		mental a	p.0545K	c.1633G+A	4501	G = 79.7, A = 20.1	-
NCA-M0-361	- ALA	p.8567R	c.1700A+G	916	A+64.2, G+35.8		

ATOC [®] No.	Cell line name		Amino acid Change	DNA Change	NGS Coverage	% Zygoelty	fumor ecurce
HTD-66	RPMI-7961	BRAF	p.V800E	6.1799ThA	1599	T= 62.5, A = 37.1	skin
CCL-238	5001417	BRAF	p. V600E	c.17991+A	3697	T=58.6, A=41.2	colon
CRL-7898	A101 D	DRAF	p.V800E	c.1799T+A	5643	T+43.8, A+55.8	skin
CCL-224	COLO 201	BRAF	p. V500E	c.1799T+A	4122	T = 22.0, A = 77.8	colon
CRL-1676	VM-266-4	BRAF	p.V600D	e.1799_1800TG	6776	T • 37.7, A • 62.1, G • 37,4, T • 62.5	sida

ATCC [®] No.	Cell line name		Amino acid Change	DNA Change	NGS Coverage	% Zygosity	Tumor
HTB-62	P3H8-1	MYC	p.Y275	c.80A+C	50463	A = 9.6, C = 89.9	
			p.254D	6.160G+A	00400	G = 10.8, A = 82.6	Durkt
			p.P725	6.214C+T	65402	C = 17.6, T = 81.2	lympho
			p.Q113H	6.339G×C	66396	G + 9.6, C + 89.2	
	CARE	MYC	p.V20	c.5803+A	22792	G = 12.1, A = 56.5	Durkt
CRL-1548			p.P725	6.214C+T	30456	C = 13.8, T = 85.3	
			p.P75H	6.224C+A	29407	C = 17.2, A = 80.3	
			p1.197V	6.877C=0	21112	C = 54.9, G = 44.7	
			p.Q321 H	6.963G+C	30065	G = 50.1, C = 49.5	
CRL-1647	57406	MYC	p.Q51L	6.152A+T	50033	A+8.1, T+87.8	
			p.P721	6.214CnA	49303	C = 21.0, A = 77.7	Durkt
			p.T110P	6.308AHC	50765	A+7.2, C+92.2	lympho
			n. 4108V	+ 500C+T	31630	C+57.7+93.0	

Summary

Over 70 genomic DNAs isolated from authenticated human cancer lines contain the desired biomarkers for oncology molecular diagnostics, which are useful tools and are helping accelerate nucleic acid-based detection for cancer.

Genomic DNAs produced by a validated automation system

Genomic DNA purity otrophoresis A280/A280 ratios of 72 genomic DNAs

	54 58 58
i i	

Genomic DNA functional tests

Next generation sequenoing -illumina

 Cell Bree
 DRA Amples
 Press
 AA Change
 DRA Change
 DRA Coverage
 VSOB VSUPERING

 RIMA-7551 (p)
 DDRA +1
 DRA F
 P VSODE
 c.179971-A
 8244
 T = 61.1, A = 36.5

 RIMA-7551 (p)
 DDRA +2
 DRA F
 P VSODE
 c.179971-A
 8244
 T = 61.1, A = 36.5

RPMI-7261 (ph) gDNA x3 BRAF p V800E c 17997+A 9644 T • 59.7, A • 40.2 Parc 10.05 (pl) gDNA x4 KRAS p.012D c 35G+A 56829 A • 53.5, G • 46.3

Panc 10.05 (pm) gDNA 45 KRAS p.G12D c.35G+A 49775 A • 52.8, G • 47.0 Panc 10.05 (ph) gDNA 45 KRAS p.G12D c.35G+A 49551 A • 52.7, G • 47.2

STR verify genomic DNA identity

28

Point mutation validation

Example: RAS genetic alteration

ATCC [®] No.	Cell line name	Gene	AA Change	DNA Change	Zygosity	Coverage at Mutation Loci	% Zygosity
CRL-2177™	SW 1271	NRAS	p.Q61R	c.182A>G	Homozygous	26732	G = 99.8%
CRL-2273™	CHP-212	NRAS	p.Q61K	c.181C>A	Heterozygous	49859	C = 50.7, A = 49.1
CRL-7585™	Hs 852.T	NRAS	p.G12V	c.35G>T	Heterozygous	66411	G = 38.0, T = 61.8
CRL-9068™	NCI-H929	NRAS	p.G13D	c.38G>A	Heterozygous	21896	A = 53.9, G = 45.9
TIB-202™	THP-1	NRAS	p.G12D	c.35G>A	Heterozygous	60288	A = 70.1, G = 29.9
CRL-2547™	Panc 10.05	KRAS	p.G12D	c.35G>A	Heterozygous	42708	G = 52.7, A = 47.3
CRL-2549™	Panc 03.27	KRAS	p.G12V	c.35G>T	Heterozygous	58913	G = 47.0, T = 52.9
HTB-174™	NCI-H441	KRAS	p.G12V	c.35G>T	Heterozygous	87521	G = 52.8, T = 47.1
CL-187™	LS 180	KRAS	p.G12D	c.35G>A	Heterozygous	91234	G = 51.3, A = 48.6
CCL-225™	HCT-15	KRAS	p.G13D	c.38G>A	Heterozygous	49764	G = 52.1, A = 47.8

Point mutation validation

Example: EGFR genetic alteration

ATCC [®] No.	Cell line name	Gene	EGFR copy number variation	Measured CNV of EGFR	ERBB2 copy number variation	Measured CNV of ERBB2	Tumor source
CRL-2868™	HCC827	EGFR	Amplification	63.01	-	-	Lung
HTB-132™	MDA-MB-468	EGFR	Amplification	25.02	-	-	Breast
HTB-19™	BT-20	EGFR	Amplification	15.73	-	-	Breast
HTB-178™	NCI-H596	EGFR	Amplification	0.06	-	-	Lung
HTB-177™	NCI-H460	EGFR	-	-	-	-	Lung
CRL-5928™	NCI-H2170	ERBB2	-	-	Amplification	128.89	Lung
HTB-20™	BT-474	ERBB2	-	-	Amplification	29.70	Breast
HTB-27™	MDA-MB-361	ERBB2	-	-	Amplification	16.85	Breast

EGFR and HER2 are currently used as predictive markers of kinase inhibitor response in non-small cell lung cancer (NSCLC) and breast cancer therapy

ATCC quantitated human gDNA

- Purified from authenticated ATCC cell lines
- Contain oncology biomarkers
- Quantified gene mutation allelic frequencies, gene copy numbers
- Quantified by validated methods for each product lot
- Supplied with certificates providing measurement results with associated uncertainties for each product lot

Quantification of genetic variations in gDNAs

Coming soon: Quantitative gDNAs

ATCC [®] No.	Gene	Mutation
HTB-131DQ™	PIK3CA	H1074R
CRL-5908DQ™	EGFR	T790M; L858R
CRL-2868DQ™	EGFR	ELREA746del
CCL-231DQ™	EGFR	G719S
CRL-7898DQ™	BRAF	V600E
CCL-225DQ™	KRAS	G13D
CL-187DQ™	KRAS	G12D
CRL-2177DQ™	NRAS	Q61R
	KRAS	G12V
	TP53	R273H
HTB-30DQ™	TP53	R175H
CRL-2158DQ™	TP53	R245S
CRL-1648DQ™	TP53	R248Q
HTB-122DQ™	TP53	R249S
HTB-111DQ™	pTEN	R130fs

Use NGS to quantify mutations

Next-generation sequencing

Workflow overview

Genomic DNA extraction and quantification Genomic DNA fragmentation Adapter ligation and PCR enrichment Clean-up/purification and QC Cluster generation on flow cell Sequencing reaction Data analysis

EGFR mutation quantification

Example of how cell passage number can affect mutation allelic frequency in some lines

BRAF mutation quantification

ATCC

NGS coverage >50,000X The impact of passage number is cell line dependent, and some lines are relatively stable

Gene copy number quantification

Gene amplifications have emerged as therapeutic targets and diagnostic biomarkers

ATCC [®] No.	Gene	Gene copy number variation	Parental cell line
CRL-2868DQ™	EGFR	amplification	HCC827
CRL-5928DQ™	ERBB2	amplification	NCI-H2170
CRL-5973DQ™	MET	amplification	SNU-5
CRL-5974DQ™	MYC	amplification	SNU-16

Use QX200 ddPCR[™] (Bio-Rad) to perform quantification

- Absolute copy number of target gene
- Absolute copy number of housekeeping gene EIF2C1
- Relative copy number/ copy number variation

Overview of ddPCR[™] workflow

Anal Chem 84(2): 1003–1011, 2012.

Quantify EGFR amplification

ddPCR[™] is performed on each lot to ensure gene copy <u>number quan</u>tification - your trusted control materials

Batch specific test results for each production lot

Example: ATCC[®] CRL-2868DQ[™] quantitated human gDNA

- **Lot:** 63788713
- Gene: EGFR
- Mutation: ELREA746del
- Mutation percentage: 100%
- EGFR absolute gene copy number: 8217.83 copies/ng
- EGFR relative gene copy number: 65.83 copies

CoA report result – NGS (Coverage > 10,000X)

NGS result uncertainty is equal or smaller than $\pm 5\%$. The reported uncertainty represents uncertainty expressed at approximately the 99% confidence level using a coverage factor of k=3.

CoA report result – ddPCR™ (Average of nine data points)

ddPCR[™] uncertainty is equal or smaller than ± 25%. The reported uncertainty represents uncertainty expressed at approximately the 99% confidence level using a coverage factor of k=3.

Conclusion

- Next-generation sequencing and other molecular tests have been used in clinical diagnostics, which is facilitating advances in disease prediction and therapeutic decision making
- Globally accepted, well-established reference materials are needed to ensure the reliability and reproducibility of diagnostic test results
- Quantitative gDNAs with known mutation allelic frequency and gene copy number provide a reliable and sustainable alternative to variable patient tissue derived controls in oncology molecular diagnostic assays

Acknowledgements

- Brian Chase
- John Foulke
- Michael Geimer
- Michael Jackson
- Stephen King
- Karin Kingdig
- Maria Mayda
- Lysa-Anne Volpe
- Melisa Wilson

Disclaimers

© 2016 American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise. PicoGreen® and RiboGreen® are registered trademarks of Invitrogen. Bio-Rad®, Droplet Digital™, and QX200™ are trademarks of Bio-Rad Laboratories, Inc. RNAstable[®] is a registered trademark of Biomātrica, Inc. Precision Medicine Initiative is a registered trademark of the US Department of Health and Human Services.

ATCC nucleic acids are for research use only

Thank you for joining today!

Register for more ATCC *"Excellence in Research"* webinars, or watch recorded webinars, at <u>www.atcc.org/webinars</u>.

September 29, 2016 12:00 PM ET Keeping Cells Happy – Topics in Cell Health Maintenance and Viability Steve Budd, M.S., *Product Line Business Specialist*, ATCC

November 3, 2016
 12:00 PM ET

The Biology of Anaerobic Bacteria and Predominant Propagation Practices Allison Faust, *Senior Biologist*, ATCC Nancy Krueger, *Senior Biologist*, ATCC

Please email additional questions to: tech@atcc.org

