TRANSFECTION REAGENTS; POWERFUL TOOLS TO ENABLE GENETIC MANIPULATION

James Clinton, Ph.D. Scientist, ATCC April 02, 2015

THE ESSENTIALS OF LIFE SCIENCE RESEARCH GLOBALLY DELIVERED*

About ATCC

- Founded in 1925, ATCC is a non-profit organization with headquarters in Manassas, VA
- World's premiere biological materials resource and standards development organization
- ATCC collaborates with and supports the scientific community with industry-standard products and innovative solutions
- Strong team of 400+ employees; over one third with advanced degrees
- Broad range of biomaterials
 - Cell lines, iPSCs, primary cells, and hTERT immortalized cells
 - Bacteria, yeasts, protists, and viruses
 - Tumor cell panels
 - Media, sera, and reagents

Established partner to global researchers and scientists

2

Introduction to Transfection

Best Practices

ATCC Transfection Reagents

Introduction to transfection

- Method for introducing exogenous nucleic acid sequences into mammalian cells
- Widely used technique that has made expressing DNA or RNA in most types of cells relatively easy
- A variety of approaches have been developed for use across a range of applications
- No single approach will work for all conditions/cell types/applications

Applications

- Gene function
- RNAi gene silencing
- Pathway analysis
- Functional screening
- Virus production
- Protein production
- Generation of stable cell lines
- Stem cell reprogramming
- Cell differentiation
- Genome editing with CRISPR/Cas9

Transfection methods

ATCC°

Lipid	 Easy, most common method Variable efficiencies Will not work with all cell types 		
Viral	 Will transfect non-dividing cells Technically challenging, expensive Safety issues, immune response, mutagenesis 		
Electroporation	 Requires specialized equipment Cells must be in suspension Toxicity can be an issue 		
Physical	 Technically challenging, expensive Requires specialized equipment Works with non-nucleic acids; single cell transfection 		
Other	 Not common, may be technically challenging Non-lipid based chemicals Nanoparticles/ Laser/ Ultrasound/ Magnetic 		

Mechanism of lipid based transfection

Typical transfection workflow

Transfection

reagent

Complexes

Overexpression vs. knockdown

Introduce foreign plasmid DNA/mRNA to induce expression of a desired transcript/protein

Utilize RNAi pathway to degrade or inhibit translation of mRNA transcripts and subsequently reduce the amount of protein

Transient vs. stable transfection

Transient

- Foreign gene not integrated into genome
- Expression persists for limited time
- Foreign gene lost due to cell division, degradation, or other factors

Stable

- Initially a transient transfection
- Use co-expressed selection markers
- Long-term, only cells that have integrated the foreign gene persist

Introduction to Transfection

Best Practices

ATCC Transfection Reagents

Transfection: best practices

Cell culture conditions

Example: culture conditions can be critical

Primary Uterine Smooth Muscle Cells (SMCs; ATCC[®] No. PCS-460-011)

Phase Contrast

Transfected in complete growth media

10X

Transfected in differentiation media

ATCC

Transfection is completely inhibited

Nucleic acids

Experimental design & execution

Transfection Protocol	 Use master mixes Distribute complexes evenly Store DNA/RNA properly 			
Proper Controls	 Positive and negative control Transfected and un-transfected controls 			
Monitor Toxicity/ Off-target Effects	 Morphological changes Presence of vacuoles Changes in proliferation 			
Validate Results	 Multiple assays For siRNA: test multiple sequences For miRNA: increase & suppress 			

Assay methods

Assay timing

Time post-transfection

Transfection reagents considerations

Ideal reagent

- Effective in all cell types
- No optimization necessary
- No cytotoxicity

Reality

- Effective in your cell type of interest
- Broad activity across culture conditions and protocols
- Minimal cytotoxicity
- An optimized protocol delivers desired expression

Transfection reagents

Best practices summary

Introduction to Transfection

Best Practices

ATCC Transfection Reagents

ATCC transfection reagents overview

- Used for transfection of mammalian adherent and suspension cells
- Formulated for low cytotoxicity and high efficiency
- Produces high levels of gene expression (or inhibition)
- Suitable for both transient and stable transfection
- Sterility, purity, and performance tested
- Animal component-free

Reagent	ATCC [®] No.	Volume	Storage
GeneXPlus Transfection Reagent	ACS-4004	1 mL	-20°C
TransfeX [™] Transfection Reagent	ACS-4005	500 µL	4°C
siFEX™ RNAi Transfection Reagent	ACS-4006	500 µL	4°C

For more information on our transfection reagents: www.atcc.org/transfection

ATCC transfection reagents selection guide

Reagent	Plasmid DNA	mRNA	siRNA & miRNA	Suspension	Hard to Transfect Cells			
GeneX <i>Plus</i>	$\checkmark \checkmark \checkmark$			\checkmark				
TransfeX™	√ √ √	√ √		~	√ √ √			
Newly released in 2015:								
siFEX™			√ √ √	~				

Available GeneXPlus optimized protocols

Optimized protocol list as of April 2015

- Find the current list of available protocols at <u>www.atcc.org/transfection</u>
- Contact Technical Service at tech@atcc.org

SH-SY5Y (ATCC[®] No. CRL-2266[™])

HEK 293T SF (ATCC[®] No. ACS-4500[™])

THP-1 (ATCC[®] No. TIB-202[™]) **Phase Contrast**

Transfection of suspension cells with GeneXPlus

GFP

Available TransfeX[™] optimized protocols

Continuous

- A549
- HeLa
- LNCap
- MDA-MB-231
- HepG2
- Caco-2
- C2C12
- 3T3-L1
- CHO-K1
- HEK293
- HUV-EC-C
- MCF7
- NuLi-1
- TIME
- BT-142

- Bone marrowderived MSCs
- Adipose tissuederived MSCs
- Cord blood-derived MSCs
- Induced pluripotent stem cells (iPSCs)

Primary

- Dermal fibroblasts (DFs)
- DMEC
- HEMCs
- HUVECs
- RPTECs
- Large airway epithelial cells
- Large airway SMCs
- Uterine fibroblasts
- Uterine SMCs
- Prostate epithelial cells

Optimized protocol list as of April 2015

- Find the current list of available protocols at <u>www.atcc.org/transfection</u>
- Contact Technical Service at tech@atcc.org

27

ATCC[®]

MCF-7 (ATCC[®] No. HTB-22[™])

NuLi-1 (ATCC[®] No. CRL-4011[™])

A549 (ATCC[®] No. CCL-185[™])

Transfect continuous cells with TransfeX™

Transfect primary cells with TransfeX[™]

Phase Contrast

Primary DFs (ATCC[®] No. PCS-100-012)

Primary HUVECs (ATCC[®] No. PCS-100-010)

Primary Uterine SMCs

(ATCC[®] No. PCS-460-011)

10X

GFP

ATCC[°]

Transfect stem cells with TransfeX™

iPSCs (ATCC[®] No. ACS-1012[™])

Bone Marrow-derived MSCs (ATCC[®] No. PCS-500-012)

Transfection of mRNA with TransfeX™

HeLa (ATCC[®] No. CCL-2[™])

Primary DF

A549

Available siFEX optimized protocols

Continuous

- TeloHAEC-GFP
- HepG2
- MCF-7
- A549
- MDA-MB-231
- HeLa
- MRC-5
- HEK293T/17
- HUV-EC-C
- 3T3-L1
- C2C12
- Caco2
- LNCap

Stem

- Adipose tissue derived MSCs
- Cord blood-derived MSCs

Primary

- Primary DFs
- Primary prostate epithelial cells

Optimized protocol list as of April 2015

- Find the current list of available protocols at <u>www.atcc.org/transfection</u>
- Contact Technical Service at tech@atcc.org

Transfection of fluorescently labeled siRNA

Knockdown of constitutive GFP expression

TeloHAEC-GFP (ATCC[®] No. CRL-4054[™])

Untransfected

+Anti-GFP siRNA

For more information on TeloHAEC and TeloHAEC-GFP cells, visit the ATCC[®] Research page in our Learning Center at <u>www.atcc.org/LearningCenter</u>

siFEX: performance tested

Transfection of pre-miRNA with siFEX

Competing Product #2 Cell viability expressed in blue

- Control SIFEXTM
- HeLa cells in 24-well plate.
- Transfected with 20 nM hsa-miR-1 pre-miRNA
- Expression of PTK9 mRNA assessed 48 h post-transfection via RT-qPCR
- Results were calculated via ΔΔCT method, n=6 transfections, mean ± STD

Summary

- Lipid-mediated transfection is a powerful tool and useful in a variety of applications
- ATCC offers a variety of transfection reagents suitable for the transfection of plasmid DNA, mRNA, and dsRNA into a variety of cell types
- ATCC transfection reagents have been performance tested to deliver high efficiency and low cytotoxicity
- ATCC offers optimized transfection protocols for dozens of cell types to help you achieve results faster
 - Continuous cell lines
 - Primary cells
 - Stem cells
 - Adding new protocols all the time

Thank you!

Register for more webinars in the ATCC "*Excellence in Research*" webinar series at <u>www.atcc.org/webinars</u>.

May 21, 2015 10:00 AM ET or 3:00 PM ET Jodie Lee, M.S., *Lead Biologist*, ATCC Seeing is Believing – Reporter Labeled Microbial Control Strains

The ATCC[®] *"Excellence in Research"* webinar series returns in Fall 2015. Look for webinars starting in August at www.atcc.org/webinars.

Thank you for joining today! Please send additional questions to <u>tech@atcc.org</u>