SEEING IS BELIEVING - REPORTER LABELED MICROBIAL CONTROL STRAINS

Jodie Y. Lee, M.S. Lead Biologist, ATCC May 21, 2015

THE ESSENTIALS OF LIFE SCIENCE RESEARCH GLOBALLY DELIVERED*

Today's discussion

Reporter labels and their use

GFP-labeled strains

NanoLuc[®]-labeled Shiga toxin-producing *Escherichia coli* strains

About ATCC

- Founded in 1925, ATCC is a non-profit organization with headquarters in Manassas, VA
- World's premiere biological materials resource and standards development organization
- ATCC collaborates with and supports the scientific community with industry-standard products and innovative solutions
- Strong team of 400+ employees; over one third with advanced degrees
- Broad range of biomaterials
 - Cell lines, iPSCs, primary cells, and hTERT immortalized cells
 - Bacteria, yeasts, protists, and viruses
 - Tumor cell panels
 - Media, sera, and reagents

Why label bacteria?

- Visualize bacteria under experimental conditions
- Differentiate between sample contamination and false positives from control cross-contamination
 - Saves money, time, and worry

Why label bacteria?

Microbial quantification and detection

Host-pathogen interactions

Drug discovery

Food testing

Gene expression

Biochemical interactions

Quality control assays

Reporter characteristics

	Green Fluorescent Protein (GFP)	NanoLuc [®] Luciferase
Live-cell assays	Yes	No
Well-characterized	Yes	No
Highly stable	Yes	Yes
Substrate required	No	Yes
Glow response	Yes	Yes
Use in vivo	Yes	No

GFP-labeled strains

- Labeled Gram-negative organisms with GFPmut3a
 - Escherichia coli
 - Salmonella enterica subsp. enterica serovar Typhimurium
 - Shigella flexneri
 - Pseudomonas aeruginosa
- *gfp* expressed behind the P_{lac} constitutive promoter
- Bright, consistent label can be used for:
 - Microbial quantification and detection
 - Host-pathogen interactions
 - Drug discovery
 - Food testing

Visual detection of GFP-labeled organisms

The expression of a bright GFP variant on a high-copy number plasmid facilitates visual identification when exposed to UV light (A) or imaged using a detection system (B &C)

Bacterial fitness and quantification

• GFPmut3a is not detrimental to bacterial fitness

• Fluorescence can be used for bacterial quantification

Plasmid stability

Plasmid is stable for at least 20 generations at 37°C in the absence of antibiotic pressure

Photo bleaching

- P. aeruginosa-GFP (ATCC[®] 10145GFP[™]) was continuously exposed to UV light to determine resistance to photo bleaching
- Fluorescence remained stable during the first 5 minutes
- Significant loss of signal after 7 minutes of exposure

Fluorescent microscopy detection of pathogen-host interactions

P. aeruginosa GFP (ATCC[®]10145GFP[™]) interaction with A549 (ATCC[®] CCL-185[™]) airway epithelial cells (100X magnification)

High-throughput detection of pathogen-host interactions

Invasion study

- P. aeruginosa GFP (ATCC[®]10145GFP[™]) was incubated in the presence of A549 (ATCC[®] CCL-185[™]) airway epithelial cell monolayers
- Cells were washed and medium supplemented with 100 µL gentamicin was added to kill extracellular bacteria (Adhesion)
- Cells were washed again (Invasion) and measured on a microplate reader

High-throughput detection of pathogen-host interactions

Flow Cytometry

P. aeruginosa (ATCC[®] 10145[™]) (purple) and P. aeruginosa GFP (ATCC[®] 10145GFP [™]) (green) suspensions were analyzed by flow cytometry

High-throughput detection of pathogen-host interactions

Macrophage uptake of Pseudomonas aeruginosa

P. aeruginosa (ATCC[®] 10145[™]) and P. aeruginosa GFP (ATCC[®] 10145GFP[™]) were incubated in the presence or absence of Cytochalasin D and analyzed by flow cytometry

In vivo detection of GFP-labeled P. aeruginosa

10⁸ CFU 10⁶ CFU 10⁴ CFU Blank

- Various doses of *P. aeruginosa* GFP (ATCC[®] 10145GFP[™]) were injected into the mid-rib of *Lactuca sativa* L. var. *longifolia*
- The bacteria was easily detected at higher concentrations in the plant host, indicating that this vector can be successfully employed to monitor bacterial growth within a plant host

ATCC GFP-labeled strains

ATCC [®] No.	Species	Reporter	Parental Strain (ATCC [®] No.)
25922GFP™	Escherichia coli	GFP	25922™
14028GFP™	Salmonella enterica subsp. enterica serovar Typhimurium	GFP	14028™
12022GFP™	Shigella flexneri	GFP	12022™
10145GFP™	Pseudomonas aeruginosa	GFP	10145™
15692GFP™	Pseudomonas aeruginosa	GFP	15692™

www.atcc.org/reporters

Promega NanoLuc[®] reporter

Cotton Swab

Filter Paper

Cell Pellet

- Intensely bright reporter
- Glow response
- Portable, does not require instrumentation

Shiga toxin-producing *E. coli*

- >265,000 cases of STEC infection in the United States each year
 - E. coli O157:H7 accounts for about 36% of STEC infections
 - ~5-10% of diagnosed infections develop into hemolytic uremic syndrome, a life threatening complication which can cause permanent health damage
- Food Safety and Modernization Act calls for expanded testing to include Non-O157 strains
 - O26 O111
 - O45 O121
 - O103 O145

Microbial strain authentication

ATCC utilizes both classical and modern techniques

- Phenotypic analysis
- Genotypic & proteotypic analyses
- Functional analysis

No single method of identification is sufficient

Phenotypic testing

Genotypic & proteotypic testing

Functional testing

STEC Testing

- Bacterial identification
 - VITEK[®] 2, VITEK[®] MS, API[®] Strips, 16S rRNA sequencing
- Molecular characterization to assess the presence of the stx1, stx2, and eaeA genes
 - PCR
- Serogroup identification
 - Immunoprecipitation assay

Minimal reporter effects on bacterial fitness

Plasmid stable for ≥2 days

Observe reporter in >65% of c.f.u. after 2 days at 42°C

Shiga toxin-producing *E. coli* (STEC) control strains

Labeled controls rule out cross-contamination of samples with the control strain

NanoLuc®-labeled control detection

Cotton Swab

Broth

External testing confirmed a clear signal after FSIS protocol for ground beef

NanoLuc[®]-labeled *Escherichia coli*

ATCC [®] No.	Species	Serotype	Genotype
BAA-2580-PACK™	Escherichia coli	O26:H11	<i>stx</i> 1+, <i>stx</i> 2+, <i>eae</i> A+
BAA-2581-PACK™	Escherichia coli	O45:H2	<i>stx</i> 1+, <i>stx</i> 2-, <i>eae</i> A+
BAA-2582-PACK™	Escherichia coli	O103:H11	<i>stx</i> 1+, <i>stx</i> 2-, <i>eae</i> A+
BAA-2583-PACK™	Escherichia coli	O111	<i>stx</i> 1+, <i>stx</i> 2-, <i>eae</i> A+
BAA-2584-PACK™	Escherichia coli	O121:H19	<i>stx</i> 1-, <i>stx</i> 2+, <i>eae</i> A+
BAA-2585-PACK™	Escherichia coli	O145	<i>stx</i> 1-, <i>stx</i> 2+, <i>eae</i> A+
BAA-2586-PACK™	Escherichia coli	O157:H7	<i>stx</i> 1+, <i>stx</i> 2+, <i>eae</i> A+
BAA-2587-PACK™	Escherichia coli	O157:H7	<i>stx</i> 1-, <i>stx</i> 2-, <i>eae</i> A-

www.atcc.org/reporters

Coming soon – Big-Six *Escherichia coli* NanoLuc[®] Strains Panel

Additional testing resources

Conclusions

- Reporter labels are a flexible research tool
- Using labels for microbial detection enhances safety and reliability in food testing
- ATCC strains provide
 - Authenticated reference standards
 - Low Passage
 - Significant savings in time and effort

Acknowledgements

Mariette Barbier, Ph.D.

© 2015 American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks listed in this publication are trademarks owned by the American Type Culture Collection unless indicated otherwise. NanoLuc[®] is a registered trademark of Promega Corporation. VITEK[®] and API[®] are registered trademarks of bioMérieux.

Thank you!

Watch recorded ATCC[®] "*Excellence in Research*" webinars on demand at <u>www.atcc.org/webinars</u>.

The ATCC[®] *"Excellence in Research"* webinar series returns in Fall 2015. Look for webinars starting in September at <u>www.atcc.org/webinars</u>.

Thank you for joining today! Please send additional questions to <u>tech@atcc.org</u>

