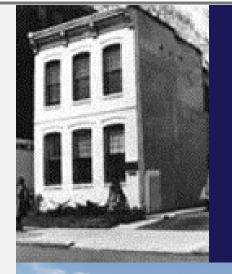
Implementation of the VITEK® MS and Its Use in Microbial Identification

Katalin Kiss, Ph.D., PMP®

Manager, Scientist, Laboratory Testing Services, ATCC


October 1, 2015

About ATCC

- Founded in 1925, ATCC is a non-profit organization with headquarters in Manassas, VA
- World's premiere biological materials resource and standards development organization
- ATCC collaborates with and supports the scientific community with industry-standard biological products and innovative solutions
- Strong team of 400+ employees; over onethird with advanced degrees

Established partner to global researchers and scientists

Certification and accreditation

ISO 9001:2008 certification for quality management system

 Demonstrates commitment to quality products, customer service, and continued improvement

ISO 13485:2003 certification for the design, development, production, testing, and distribution of medical devices

Applies to synthetic molecular standards, the HIV surveillance kit, and other diagnostic and research kits

ISO Guide 34:2009 accreditation for production

 Applies to Certified Reference Materials (CRMs)

ISO/IEC 17025:2005 accreditation for testing

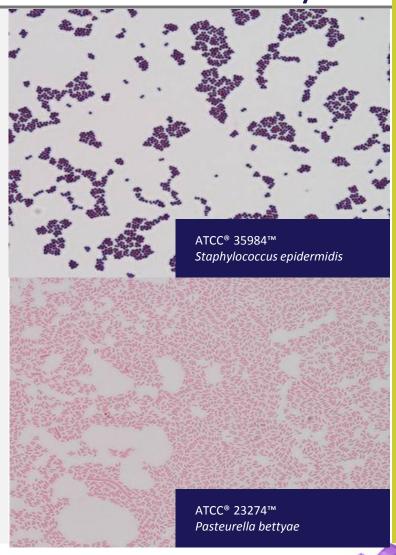
 Applies to all ATCC cultures, derivatives, and bioproducts tested in our laboratories

FM 610678

ATCC Accessions

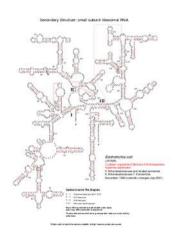
- Deposits come from every continent
- Newly identified species, outbreak strains, type strains, etc.
- Grow/expand deposit to a large enough scale to distribute
- Preserve according to the best method for the species
- Some cultures have to be maintained in continuous culture
- Confirm identity noted by the depositor
- Minimum test is purity, viability, and sequence
- Goal is two platforms to confirm the item
- Worldwide distribution
- Ship frozen/live materials

Identification of microbes – After the 19th century

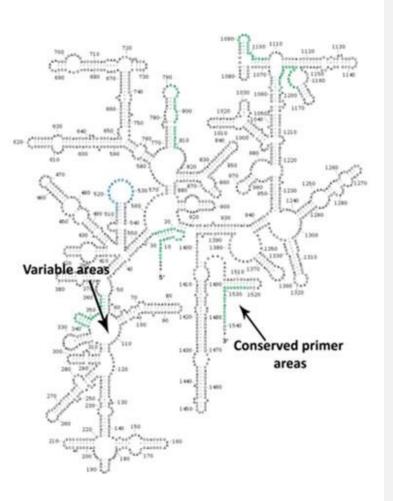

- What does it look like?
 - Macroscopic
 - Microscopic
- How does it grow?
 - Solid media
 - Suspension
 - Biphasic
 - Temperature
 - Atmosphere
 - Carbon source
 Metabolic by-products
- What does it smell like?
 - Not recommended

Identification of microbes – After the 19th Century

- How does it stain?
- To name a few:
 - Gram stain
 - Acid-fast stain
 - Gimenez
 - Giemsa



Identification of microbes – Genotypic testing



Identification of microbes – Genotypic testing

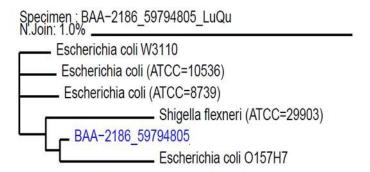
- Confirm identity by genotypic methods to the genus and species level
- Sequencing analysis of the 16S rRNA gene
- Fast and reliable, but limited species and strain resolution
- DNA-DNA hybridization
- Ribotyping

There is no concise definition of a species!

Risks of relying on just phenotypic authentication

- Descriptions can be very subjective
- You need to know what tests to apply
- Some genera are biochemically inert
- Time consuming

- Grew anaerobically, 37°C
- Gram-negative rods
- Non-motile
- To differentiate aerobic growth, catalase, oxidase, motility, variety of carbohydrates, etc.



Risks of relying on just genotypic authentication

Not answered by most genotypic testing:

- Which one is it?
- Does it express the trait I need?
- No consensus on definition of a species at the genetic level. Minimum homology can be from 50% to 70%.

Description	Max score	Total score	Query cover	E value	Max ident
Clostridium acetobutylicum strain S512 16S ribosomal RNA gene, partial sequence	2242	2242	100%	0	100%
Bacillus anthracis strain R5-331 16S ribosomal RNA gene, partial sequence	2242	2242	100%	0	100%
Bacillus cereus strain OPP5 3-2 16S ribosomal RNA gene, partial sequence	2242	2242	100%	0	100%

ATCC identification – the most robust system possible

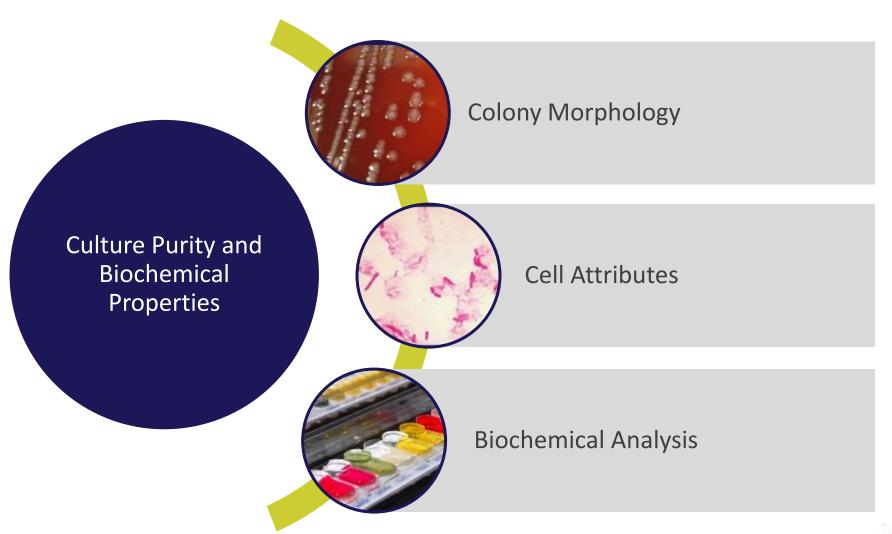
ATCC utilizes both classical and modern techniques


- Phenotypic analysis
- Genotypic analysis
- Functional analysis

No single method of identification is sufficient

ATCC identification – Why do we need the most robust system possible?

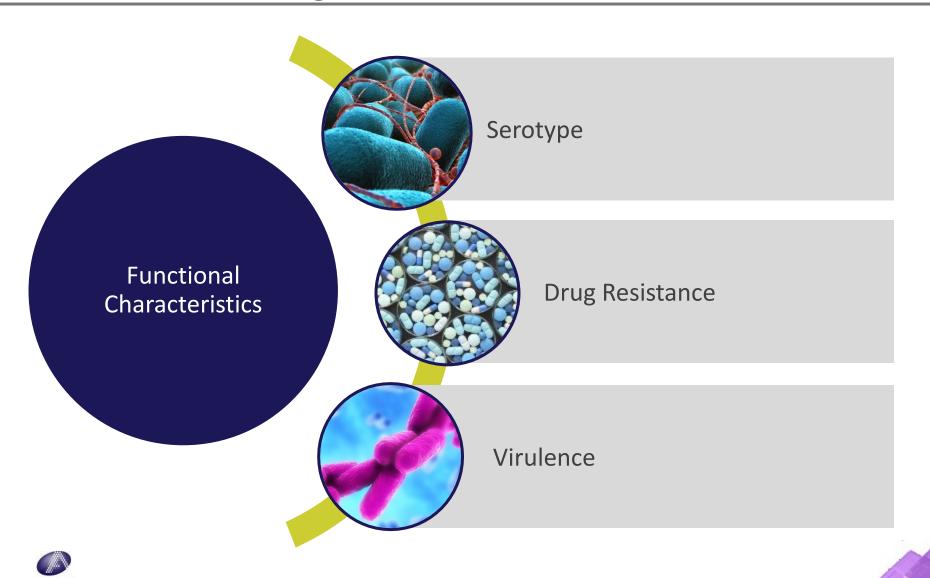
- Help our customer make the right choice when selecting a catalog item
- Provide the most consistent product possible
- Perform according to the standard
- Comply with local, state, federal, and international regulation


Permits may be required for shipping this product

Distribution requires completion of a Customer Acceptance of Responsibility (CAR) for Commerce Control List Biologicals form.

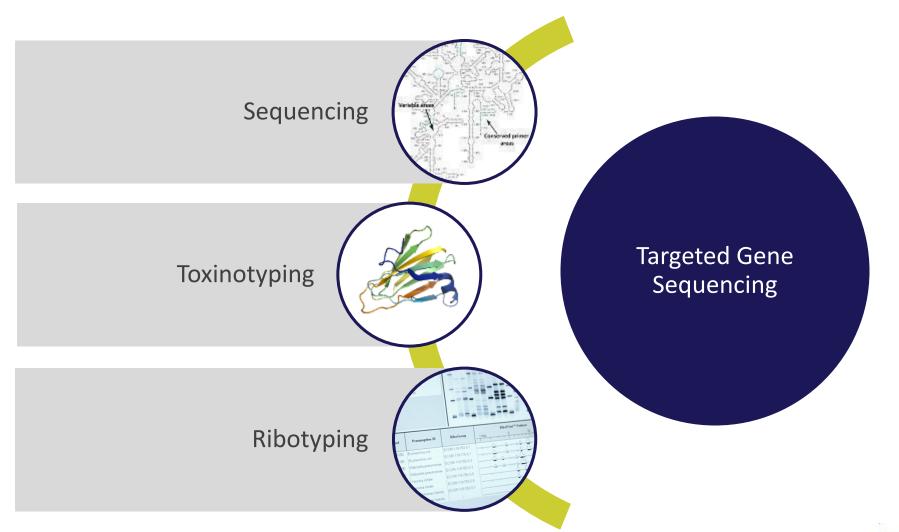
Customers located in Hawaii will need to contact the Hawaii Department of Agriculture to determine if an Import Permit is required.

Phenotypic testing


Phenotypic testing platforms at ATCC

- API® ID
- Remel RapID™
- Biolog Microbial ID
- VITEK® 2
- Serotyping
- Hundreds of biochemical tests

Functional testing


Functional testing platforms at ATCC

- AST
- Toxin assay
- IFA
- ELISA
- Cytotoxicity assay

Genotypic testing

Genotypic testing platforms at ATCC

- ABI 3500 XL analyzers
 - MicroSeq® database
 - Public databases
 - Sequence provided by the depositor
- PCR
- DuPont™ RiboPrinter®
- Illumina® MiSeq

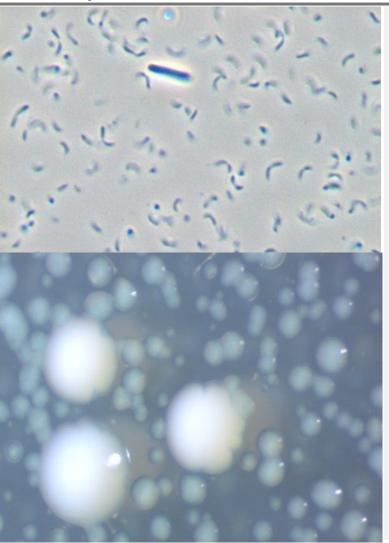
Steps to the identification of microbes at ATCC

What is the current Is this a new taxon? Purity and identification? What tests should How does it grow? Is it in a database? we do? Sequencing What will this item be Toxinotyping Is it pure? used for? Ribotyping

What is the current identification?

ATCC THE ESSENTIALS OF LIFE SCIENCE RESEARCH BACTERIOLOGY, MYCOLOGY, & PRODEPOSIT DESCRIPTION FOR	
INSTRUCTIONS TO DEPOSITOR: Please fill in relevant and available informa	tion about each deposit additional
information, references, or pages may be attached as needed. This inf	ormation helps us (ter
characterize and preserve your deposit.	
Type of Deposit (please select one of the following): Bacteriology	Mycology Protistolo
1. BACKGROUND INFORMATION	
The "MATERIAL" subject to this Deposit Form is:	
Taxonomic Classification:	
Family:	•
Genus:	
Species:	
Subspecies/Strain:	
Biological Agent/Common Nan Nan COt r State	
b. Is this material a type st	
c. Method of identification g. m. lar methods):	
d. Date of less cross	
e. Geographic source of material country, state, locale, GPS coordinate	es or latitude/longitude):
f. Source of isolate:	
Was this mathrial isolated from:	
THE CHIEF STATE OF THE CHIEF	
American Type Culture Collection (ATCC®) P.O. Box 1549 Manassas, VA 20110 USA	(800) 638-6597 or 703-365-2700 Fax: 703-365-2750 Doc ID: 26714
www.atcc.org	Effective Date: 05/14/2014 Revision: 2
Page 1 of 6	revision. 2

Steps to identification- How does it grow?


How do we grow it?

- Media
- Atmosphere
- Temperature
- Incubation time
- Access to thousands of media formulations
- >15 temperatures available at all times
- Anaerobic chambers
- Cannula system for custom gas mixtures
- Lighted incubators

Steps to identification – Is it pure?

- Contaminants are not tolerated
- We avoid selective media for growth
- We spot check when the material is passaged
- We check all anaerobic cultures for aerobic contaminants

Steps to identification — Is it a new taxon? Is it described in a database or literature?

- Check depositor information
- Peer reviewed literature
- Text books, such as Bergey's Manual of Systematic Bacteriology
- Online databases, NCBI, RDP, etc.
- Not every catalog item has been described in depth
- Minimal test is purity, viability, and sequencing
- If we have access, we can confirm 16S rRNA sequence

Steps to identification – What will this be used for?

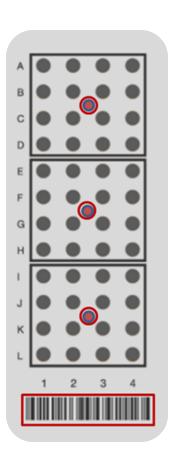
Complexity

Method	Complexity
API® ID	Moderate
Biolog Microbial ID	Moderate
VITEK® 2	Moderate
Hundreds of biochemical tests	Moderate-Advanced
ABI 3500 XL analyzers	Advanced
DuPont™ RiboPrinter®	Moderate
PCR	Moderate-Advanced
VITEK® MS	Easy

Turnaround time

Method	Turnaround time
API® ID	24-48 hours
Biolog Microbial ID	8 hours
VITEK® 2	4-6 hours
Hundreds of biochemical tests	24 hours or longer
ABI 3500 XL analyzers	1 day
DuPont™ RiboPrinter®	1 day
PCR	4 hours
VITEK® MS	Minutes

Sample preparation



Method	Sample Preparation
API® ID	Fresh, pure
Biolog Microbial ID	Fresh, pure
VITEK® 2	Fresh, pure
Hundreds of biochemical tests	Fresh, pure
ABI 3500 XL analyzers	Pure
DuPont™ RiboPrinter®	Pure
PCR	Pure
VITEK® MS	Fresh, Pure

Sample preparation

- Basic protocol for bacteria:
 - Grow bacteria on a solid surface for isolation.
 - Transfer a spot from the colony to the slide
 - Add matrix
 - Allow to dry
 - Read slide
- For fungi, an additional lysis reagent is needed
- Sample prep take less than five minutes

Interpretation of data

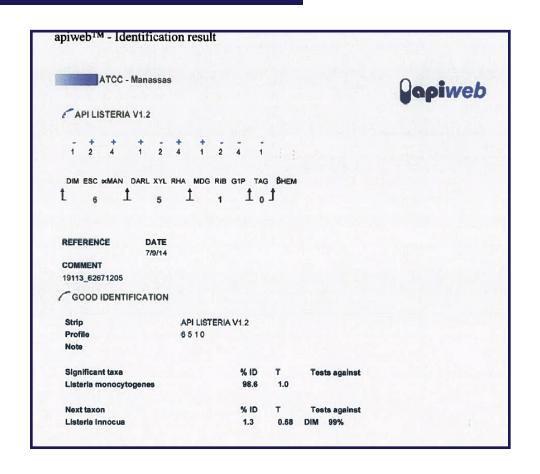
Method	Data Output	Ease of Interpretation
API® ID	Genus, species, score	Easy
Biolog Microbial ID	Genus, species, score	Easy
VITEK® 2	Genus, species, score	Easy
Hundreds of biochemical tests	+ or -	Moderate
ABI 3500 XL analyzers	FASTA File	Complex
DuPont™ RiboPrinter®	Genus, species, score	Easy
PCR	+ or - / size amplicon	Easy-Moderate
VITEK® MS	Genus, species, score	Easy

Interpretation of data – Biochemical results

Assay	L. grayi	L. innocua	L. ivanovii	L. monocytogenes
Mannitol	+	-	-	-
L-Rhamnose	-	d	-	+
Soluble starch	+	-	-	-
D-xylose	-	-	+	-
B-hemolysis	-	-	+	+

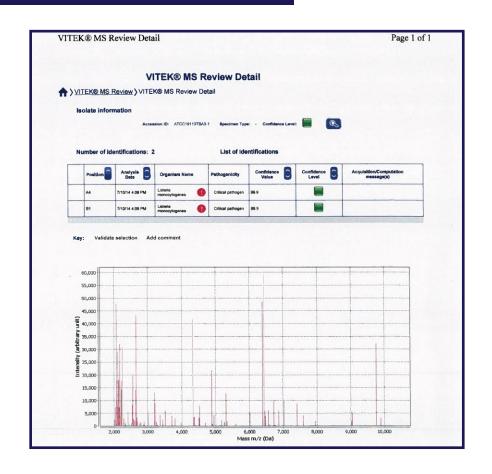
Interpretation of data – VITEK® 2 card

TEXT			Caro	1:	GN		Lot Number:	2412874	20	Expires:		Oct 2	27, 2014	13:00
Ide	ntification Infor	matior		plete	d: Jun 27, 20 15:48 EDT		Status:	Final		Analysis Time:		6.00	hours	
			96%	Prob	ability		Klebsiella	pneumoni	ae ss	sp rhinos	cler	omati	8	
Sei	ected Organisi	m	Bior	numb	er: 620571054	425602	200		(Confiden	ce:		ellent tification	
SRF	Organism						In a large							1 1
Ana	lysis Organisms a	nd Tests	to Sepa	rate:				1.7						
-1-							-							
Ana	lysis Messages:													
Con	traindicating Typic	cal Biop	attern(s)											
	-													
Klet	traindicating Typic esiella pneumoniae escleromatis			Γ(11),										
Klet	siella pneumoniae													
Klet	siella pneumoniae										Į.			
Klet	siella pneumoniae	ssp									l l			
Klet	osiella pneumoniae oscleromatis	ssp	СМТ		PyrA	+	5 IARL	ļ- 7		dCEL	+	9	BGAL	F
Klet	osiella pneumoniae oscleromatis ochemical Deta	ils 3 AD	СМТ	r(11), +	PyrA 2 AGLTp	+	5 IARL		\rightarrow	dCEL GGT	+	9	BGAL OFF	-+
Klet rhine Bio	osiella pneumoniae oscleromatis chemical Deta APPA - H2S -	ils 3 AD	CMT	+ 4		+ - +		+ 1	4		+	_		- +
Bio 2 10	osiella pneumoniae oscleromatis ochemical Deta APPA - H2S - BGLU +	ils 3 AD	CMT	+ 4	2 AGLTp	-	13 dGLU	+ 1	4	GGT	+	15	OFF	- +
Bio	chemical Deta APPA - H2S - BGLU + ProA -	ils 3 AD 11 BN 18 dM	CMT	+ 4 - 1 + 1 - 2	2 AGLTp 9 dMAN	-	13 dGLU 20 dMNE	+ 1	4 1 1 1 1 1	GGT BXYL	+ +	15 22	OFF BAlap	-
Bio 2 10 17 23 33	chemical Deta APPA - H2S - BGLU + ProA - SAC -	ils 3 AC 11 BN 18 dW 26 LIF 34 dT	CMT	+ 4 - 1 - 2 - 3	2 AGLTp 9 dMAN 7 PLE	+	13 dGLU 20 dMNE 29 TyrA	+ 1	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GGT BXYL URE	-	15 22 32	OFF BAlap dSOR	-
Bio 2 10 17 23	APPA - H2S - BGLU + ProA - SAC - ILATk +	ils 3 AC 11 BN 18 dW 26 LIF 34 dT	CMT	+ 4 - 1 + 1 - 2 - 3	2 AGLTp 9 dMAN 7 PLE 5 dTRE	+	13 dGLU 20 dMNE 29 TyrA 36 CIT	+ 1 + 2 + 3 - 3	4 !1 1 1 1 1 1 1 1 1 1	GGT BXYL URE MNT	+	15 22 32 39	OFF BAlap dSOR 5KG	+



Interpretation of data – MicroSeq® database search

Specimen	Library	Library Entry Name	% Match	Consensus Length	Library Entry Length	Total Mismatches
6908_622520 91_SaLi	AB_BacterialF ullGeneLib_2. 0	Klebsiella pneumoniae rhinoscleroma tis (ATCC=13884	100.0	812	1488	0
6908_622520 91_SaLi	AB_BacterialF ullGeneLib_2. 0	Klebsiella pneumoniae ozaenae (ATCC=11296	99.61	812	1488	4
6908_622520 91_SaLi	AB_BacterialF ullGeneLib_2. 0	Klebsiella pneumoniae pneumoniae (ATCC=10031	99.48	812	1457	6
6908_622520 91_SaLi	AB_BacterialF ullGeneLib_2. 0	Klebsiella pneumoniae pneumoniae (ATCC=13883	99.48	812	1488	4
6908_622520 91_SaLi	AB_BacterialF ullGeneLib_2. 0	Enterobacter cancerogenus (ATCC=33241	99.11	812	1488	9



Interpretation of data – API® strip

Interpretation of data – VITEK® MS

Database

Method	Data Output	Size of database
API® ID	Genus, species, score	>300
Biolog Microbial ID	Genus, species, score	>1500
VITEK® 2	Genus, species, score	>400 species
Hundreds of biochemical tests	+ or -	?
ABI 3500 XL analyzers	FASTA File	?
DuPont™ RiboPrinter®	Genus, species, score	>1400
PCR	+ or - / size amplicon	NA
VITEK® MS	Genus, species, score	>2000

Expandability

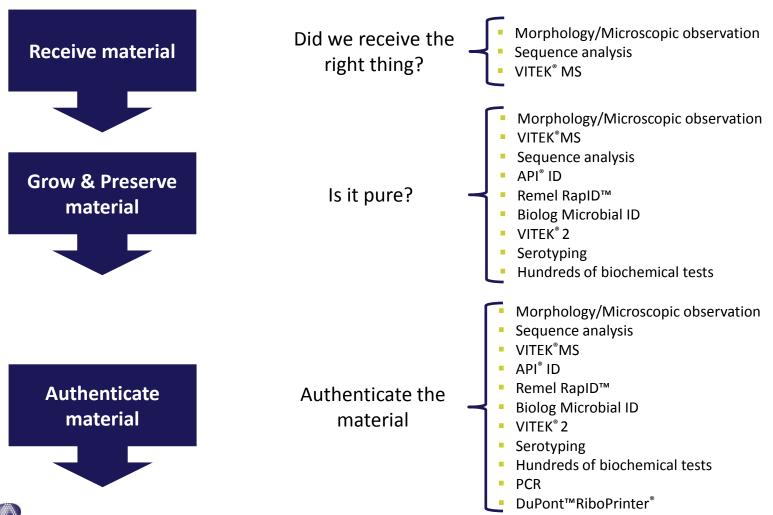
Method	Size of database	Can we expand the database?
API® ID	>300	No
Biolog Microbial ID	>1500	No
VITEK® 2	>400 species	No
Hundreds of biochemical tests	3	No
ABI 3500 XL analyzers	3	Yes
DuPont™ RiboPrinter®	>1400	Yes
PCR	NA	NA
VITEK® MS	>2000	Yes

Summary – Methods

Method	Complexity	Turnaround Time	Sample Preparation	Ease of Interpretation	Size of the Database
API® ID	Moderate	24-48 hours	Fresh, pure	Easy	>300
Biolog Microbial ID	Moderate	8 hours	Fresh, pure	Easy	>1500
VITEK® 2	Moderate	4-6 hours	Fresh, pure	Easy	>400 species
Hundreds of biochemical tests	Moderate- Advanced	24 hours or longer	Fresh, pure	Moderate	?
ABI 3500 XL analyzers	Advanced	1 day	Pure	Complex	?
DuPont™ RiboPrinter®	Moderate	1 day	Pure	Easy	>1400
PCR	Moderate- Advanced	4 hours	Pure	Easy- Moderate	NA
VITEK® MS	Easy	Minutes	Fresh, Pure	Easy	>2000

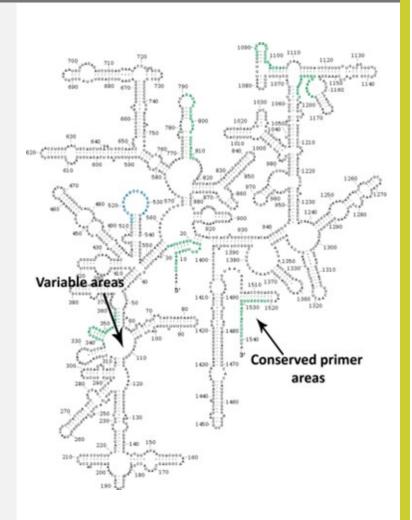
Installation:

- Required only one modification to change an electrical socket
- Reset climate control to 68°F to ensure proper functioning of machine
- Very few moving parts of the machine, can be remotely monitored and manipulated if needed


Training:

We have over ten people trained on the use of the machine. We used a 'train the trainer approach' where one of our team members went to the bioMérieux training and is responsible for training our staff in sample preparation and machine usage.

Implementation into the ATCC Process



Challenges to implementation?

- Developing protocols for broth grown cultures
- Developing protocols for filamentous fungi
- There will always be slash calls

There is no concise definition of a species!

Conclusion

- VITEK® MS is a user-friendly platform
- Training is straightforward with some practice required
- Data is easy to interpret
- It has one of the largest, curated databases available
- Sample preparation is comparable to other methods currently being used
- Turnaround time is faster than other methods currently being used
- Installation was simple

API® and VITEK® are registered trademarks of BioMérieux. RapID is a trademark of Thermo Fisher Scientific. RiboPrinter® and Dupont™ are registered trademarks or trademarks of E. I. du Pont de Nemours and Company. Illumina® is a registered trademark of Illumina, Inc. MicroSeq® is a registered trademark of Applied Biosystems.

Thank you for joining today!

Register for more ATCC "Excellence in Research" webinars, or watch recorded webinars, at www.atcc.org/webinars.

- October 29, 2015
 10:00 AM, 3:00 PM EST
 Barry R. Bochner, Ph.D., CEO & CSO, Biolog, Inc.
 High Resolution Phenomic Analysis of Microbial and Mammalian Cells
- November 12, 2015 10:00 AM, 3:00 PM EST Bill Hirt, Ph.D., Director of Accreditation, ANAB How Does ISO 17025 Accreditation Build International Confidence?

Please email additional questions to: tech@atcc.org

