USING LUHMES CELLS AS A MODEL SYSTEM TO STUDY DOPAMINERGIC NEURON CELL BIOLOGY

Tigwa H. Davis, Ph.D. Senior Scientist October 16, 2014

HE EXEMPLES OF LIFE SCIENCE RESEARCH R.DOALLY DELIVERED"

About ATCC

- Founded in 1925, ATCC is a non-profit organization with headquarters in Manassas, VA
- World's premiere biological materials resource and standards development organization
- ATCC collaborates with and supports the scientific community with industry-standard products and innovative solutions
- Broad range of biomaterials
 - Cell lines
 - Microorganisms
 - Native & synthetic nucleic acids
 - Reagents

Outline

Current Neuronal Models

Basics of Dopaminergic Biology

Generation of LUHMES Cell Line

Neuronal Phenotype

Two Studies Using LUHMES Cells

Outline

Current Neuronal Models

Basics of Dopaminergic Biology

Generation of LUHMES Cell Line

Neuronal Phenotype

Two Studies Using LUHMES Cells

ATCC brain cell lines

Major brain tumors	ATCC cell lines		
Glioblastoma	✓		
Neuroblastoma	\checkmark		
Astrocytoma	\checkmark		
Medulloblastoma	\checkmark		
Oligodendroglioma	\checkmark		

Special focus	ATCC cell lines			
Pediatric brain tumo	or 🔨			
Primary tumo	or 🔨			
Metastatic tumo	or 🗸			
Tools for neurobiology studies				
Brain cell type	ATCC cell lines			
Astrocyte	<			
Oligodendrocyte	\checkmark			
Microglia	\checkmark			

PC12 and SHSY5Y - commonly used cell lines in neuroscience

PC12 – Pheochromacytoma (Rat) adrenal medulla

SHSY5Y – Neuroblastoma (Human) extracted from metastasis of human bone marrow

ATCC offers many neuronal and glial cell lines that are ideal for your research

- > 100 neuronal, glial and endothelial cell lines for neuroscience research
- Many organisms and specific cell types.
- > 40,000 peer reviewed publications associated these cell lines.

ATCC [®] No.	Species	Cell Line	Cell Type	Genes Expressed	
CRL-1721™	Rat	PC-12	Neuroendocrine	NGF receptor, Dopamine	
CRL-2266™	Human	SHSY5Y	Neuroblastoma	Tyrosine Hydroxylase	
CRL-2302™	Human	ARPE-19	Retinal Pig Epithelium	CRAL-BP, RPE-65	
CRL-10742™	Human	HCN-2	Cortical neuron	BIII Tubulin, Glutamate, GABA	
CRL-2927™	Human	LUHMES	Ventral Mesencephalon precursor neuron	TH, Dopamine, BIII tubulin	
CCL-107™	Rat	C6 glioma	Glial cell	S100, GPDH	
CCL-82™	Rat	GH1	Pituitary tumor	GH, Prolactin, Somatotropin	
CCL-131™	Mouse	Neuro-2a	Neuroblast	AchE, BIII tubulin	
CCL-147™	Mouse	NB41A3	Neuroblast	TH, AchE, ChAT	
CRL-11179™	Mouse	CATH.a	Neuron	Dopamine, NE	
CRL-2925™	Mouse	NE-4C	Neural stem cells	Sox-2, Otx-2, En-1	
CRL-2299™	Mouse	bEnd.3	Cortex, endothelioma	ICAM-1, V-CAM-1	

ATCC offers many neuronal and glial cell lines that are ideal for your research

- > 100 neuronal, glial and endothelial cell lines for neuroscience research
- Many organisms and specific cell types.
- > 40,000 peer reviewed publications associated these cell lines.

ATCC [®] No.	Species	Cell Line	Cell Type	Genes Expressed	
CRL-1721™	Rat	PC-12	Neuroendocrine	NGF receptor, Dopamine	
CRL-2266™	Human	SHSY5Y	Neuroblastoma	Tyrosine Hydroxylase	
CRL-2302™	Human	ARPE-19	Retinal Pig Epithelium	CRAL-BP, RPE-65	
CRL-10742™	Human	HCN-2	Cortical neuron	BIII Tubulin, Glutamate, GABA	
CRL-2927™	Human	LUHMES	Ventral Mesencephalon precursor neuron	TH, Dopamine, BIII tubulin	
CCL-107™	Rat	C6 glioma	Glial cell	S100, GPDH	
CCL-82™	Rat	GH1	Pituitary tumor	GH, Prolactin, Somatotropin	
CCL-131™	Mouse	Neuro-2a	Neuroblast	AchE, BIII tubulin	
CCL-147™	Mouse	NB41A3	Neuroblast	TH, AchE, ChAT	
CRL-11179™	Mouse	CATH.a	Neuron	Dopamine, NE	
CRL-2925™	Mouse	NE-4C	Neural stem cells	Sox-2, Otx-2, En-1	
CRL-2299™	Mouse	bEnd.3	Cortex, endothelioma	ICAM-1, V-CAM-1	

Outline

Current Neuronal Models

Basics of Dopaminergic Biology

Generation of LUHMES Cell Line

Neuronal Phenotype

Two Studies Using LUHMES Cells

The amino acid, tyrosine, is the cornerstone of dopaminergic biology

https://www.neb.com/tools-and-resources/usage-guidelines/amino-acid-structures

Enzymatic generation of the neurotransmitter dopamine

http://www.newworldencyclopedia.org/entry/Tyrosine

Dopaminergic biology is involved in many facets of life

Functions of Dopaminergic System

- Sensation of pleasure
- Motivation and reward
- Motor function
- Compulsion

Dopaminergic biology is involved in many facets of life

Dysfunction of Dopaminergic System

- Parkinson's disease
- Schizophrenia
- Drug abuse and addiction

Studying dopaminergic biology *in vitro - a* difficult and expensive proposition

Relevant Models

- 1. Primary neurons (Human, Mouse, Rat etc)
 - Isolate at early embryonic timepoints
 - Low yield from Ventral Mesencephalon
- 2. Neurons derived from Induced Pluripotent Stem Cells or Neural Progenitors
 - Great Models
 - More Expensive
 - Time Consuming

An <u>ideal</u> model would capitulate multiple aspects of the desired *in vivo* system, but be quick and easy to generate as well as cost efficient.

http://www.parkinsoninfo.org/wp-content/uploads/2012/10/pd-brain-pic.jpg

Outline

Current Neuronal Models

Basics of Dopaminergic Biology

Generation of LUHMES Cell Line

Neuronal Phenotype

Two Studies Using LUHMES Cells

THE JOURNAL OF BIOLOGICAL CHEMISTRY © 2002 by The American Society for Biochemistry and Molecular Biology, Inc. Vol. 277, No. 41, Issue of October 11, pp. 38884-38894, 2002 Printed in U.S.A.

Effect of Mutant α-Synuclein on Dopamine Homeostasis in a New Human Mesencephalic Cell Line*

Received for publication, June 4, 2002, and in revised form, July 21, 2002 Published, JBC Papers in Press, July 26, 2002, DOI 10.1074/jbc.M205518200

Julie Lotharius[‡], Sebastian Barg[§], Pia Wiekop[¶], Cecilia Lundberg[‡], Heather K. Raymon[∥], and Patrik Brundin^{‡**}

From the ‡Section for Neuronal Survival, Wallenberg Neuroscience Center, §Department of Physiological Sciences, Lund University, Lund 221 84, Sweden, the ¶Section for Microdialysis, Neurosearch A/S, Ballerup DK-2750, Denmark, and the ¶Signal Research Division, Celgene Corporation, San Diego, California 92121

Isolation of LUHMES Cells

- Eight week embryonic mesencephalon tissue was isolated and dissociated.
- Cells were immortalized with a linx v-myc retrovirus.

Termination of V-myc expression with tetracycline results in robust differentiation of LUHMES cells

Undifferentiated

ATCC

Termination of V-myc expression with tetracycline results in robust differentiation of LUHMES cells

LUHMES are easy to grow and maintain

To Grow	DMEM: F12	N2	bFGF	cAMP	GDNF	Tetracycline
Proliferating LUHMES	Х	Х	Х			
Differentiated LUHMES	Х	Х		Х	Х	Х

DO LUHMES CELLS EXPRESS MARKERS ASSOCIATE WITH DOPAMINERGIC BIOLOGY?

Outline

Current Neuronal Models

Basics of Dopaminergic Biology

Generation of LUHMES Cell Line

Neuronal Phenotype

Two Studies Using LUHMES Cells

Undifferentiated LUHMES cells express floorplate markers that identify dopaminergic cells

J. Nelander et al. / Gene Expression Patterns 9 (2009) 555-561

LUHMES cells express neuronal markers following differentiation

8 days in vitro

LUHMES cells express growth cones containing lamellopodia and filopodia during differentiation

Dopaminergic markers are expressed following differentiation of LUHMES cells

Differentiated LUHMES cells are electrically active

Differentiated LUHMES cells are electrically active

Differentiated LUHMES cells are electrically active

Summary Slide – Part I

- LUHMES cells are precursor cells isolated from 8 week embryonic ventral mesencephalon.
- LUHMES cells are easily differentiated into neurons upon the addition of minimal growth factors including, GDNF, cAMP, and tetracycline.
- LUHMES cells express mature neuronal markers including NeuN and bIII tubulin.
- Expression of various dopaminergic genes including tyrosine hydroxylase, dopamine decarboxylase, the dopamine transporter, and dopaminergic receptors are observed by qPCR.
- Experiments using a calcium sensitive fluorescent dye indicate the presence of neuronal activity, as well as the presence of functional glutamate receptors.

Outline

Current Neuronal Models

Basics of Dopaminergic Biology

Generation of LUHMES Cell Line

Neuronal Phenotype

Two Studies Using LUHMES Cells

Parkinson's disease – A heavy emotional and economic burden

Gowers W R. A Manual of Diseases of the Nervous System, J & A Churchill. 591, 1886.

- Neurological Disorders affect more than 50 million Americans each year, costing more than \$500 billion to treat.
- According to a recent study from the Center for Disease Control, complications from
 Parkinson's disease (PD) is the 14th leading cause of death in the United States.
- In the US, 50,000 60,000 new cases of PD are diagnosed each year. PD cost the US ~ \$25 billion per year.
- There are approximately 1 million individuals with PD in the US and 4-6 million worldwide.

PD involves the malfunction and death of vital nerve cells in an area of the brain called the substantia nigra. Some of these dying neurons produce dopamine, a chemical that sends messages to the part of the brain that controls movement and coordination. As PD progresses, the amount of dopamine produced in the brain decreases, leaving a person unable to control movement normally.

PD involves the malfunction and death of vital nerve cells in an area of the brain called the substantia nigra. Some of these dying neurons produce dopamine, a chemical that sends messages to the part of the brain that controls movement and coordination. As PD progresses, the amount of dopamine produced in the brain decreases, leaving a person unable to control movement normally.

D2 D4

LUHMES cells express markers important for the study of Parkinson's disease

• **α- synuclein** – Major component of pathogenic Lewy bodies

LRRK2 – Associated mutations are the most common in PD

LUHMES cells express markers important for the study of Parkinson's disease

- Parkin Protein that tags and targets damaged mitochondria for mitophagy
- **PINK1** Mediates the activation and translocation of parkin

Outline

Current Neuronal Models

Basics of Dopaminergic Biology

Generation of LUHMES Cell Line

Neuronal Phenotype

Two Studies Using LUHMES Cells

www.nature.com/cddis

Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP⁺

AK Krug*¹, S Gutbier¹, L Zhao², D Pöltl^{1,3}, C Kullmann¹, V Ivanova^{3,4}, S Förster¹, S Jagtap⁵, J Meiser⁶, G Leparc⁷, S Schildknecht¹, M Adam¹, K Hiller⁶, H Farhan⁸, T Brunner⁹, T Hartung², A Sachinidis⁵ and M Leist¹

 Attempting to re-evaluate the transcriptional and metabolic changes in response to MPP+ a classical toxicant.

ATCC

www.nature.com/cddis

Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP⁺

AK Krug*¹, S Gutbier¹, L Zhao², D Pöltl^{1,3}, C Kullmann¹, V Ivanova^{3,4}, S Förster¹, S Jagtap⁵, J Meiser⁶, G Leparc⁷, S Schildknecht¹, M Adam¹, K Hiller⁶, H Farhan⁸, T Brunner⁹, T Hartung², A Sachinidis⁵ and M Leist¹

- Attempting to re-evaluate the transcriptional and metabolic changes in response to MPP+ a classical toxicant.
- MPP+ inhibits complex I in mitochondria and is assumed to cause death due by energy failure.

ATCC

www.nature.com/cddis

Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP⁺

AK Krug*¹, S Gutbier¹, L Zhao², D Pöltl^{1,3}, C Kullmann¹, V Ivanova^{3,4}, S Förster¹, S Jagtap⁵, J Meiser⁶, G Leparc⁷, S Schildknecht¹, M Adam¹, K Hiller⁶, H Farhan⁸, T Brunner⁹, T Hartung², A Sachinidis⁵ and M Leist¹

- Attempting to re-evaluate the transcriptional and metabolic changes in response to MPP+ a classical toxicant.
- MPP+ inhibits complex I in mitochondria and is assumed to cause death due by energy failure.
- Desired a homogeneous population of fully postmitotic dopaminergic neurons

ATCC

www.nature.com/cddis

Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP⁺

AK Krug^{*,1}, S Gutbier¹, L Zhao², D Pöltl^{1,3}, C Kullmann¹, V Ivanova^{3,4}, S Förster¹, S Jagtap⁵, J Meiser⁶, G Leparc⁷, S Schildknecht¹, M Adam¹, K Hiller⁶, H Farhan⁸, T Brunner⁹, T Hartung², A Sachinidis⁵ and M Leist¹

www.nature.com/cddis

Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP⁺

AK Krug*¹, S Gutbier¹, L Zhao², D Pöltl^{1,3}, C Kullmann¹, V Ivanova^{3,4}, S Förster¹, S Jagtap⁵, J Meiser⁶, G Leparc⁷, S Schildknecht¹, M Adam¹, K Hiller⁶, H Farhan⁸, T Brunner⁹, T Hartung², A Sachinidis⁵ and M Leist¹

www.nature.com/cddis

Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP⁺

AK Krug*¹, S Gutbier¹, L Zhao², D Pöltl^{1,3}, C Kullmann¹, V Ivanova^{3,4}, S Förster¹, S Jagtap⁵, J Meiser⁶, G Leparc⁷, S Schildknecht¹, M Adam¹, K Hiller⁶, H Farhan⁸, T Brunner⁹, T Hartung², A Sachinidis⁵ and M Leist¹

www.nature.com/cddis

Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP⁺

AK Krug*¹, S Gutbier¹, L Zhao², D Pöltl^{1,3}, C Kullmann¹, V Ivanova^{3,4}, S Förster¹, S Jagtap⁵, J Meiser⁶, G Leparc⁷, S Schildknecht¹, M Adam¹, K Hiller⁶, H Farhan⁸, T Brunner⁹, T Hartung², A Sachinidis⁵ and M Leist¹

Outline

Current Neuronal Models

Basics of Dopaminergic Biology

Generation of LUHMES Cell Line

Neuronal Phenotype

Two Studies Using LUHMES Cells

Original Article

Acta Pharmacologica Sinica (2014) 35: 945–956 © 2014 CPS and SIMM All rights reserved 1671-4083/14 \$32.00 www.nature.com/aps

Cell-based assays for Parkinson's disease using differentiated human LUHMES cells

Xiao-min ZHANG^{1,2}, Ming YIN¹, Min-hua ZHANG^{2, *}

- Zhang *et al.* wanted to develop a cell based assay/High-throughput screen to evaluate drugs for the treatment of PD
- Criteria for a cellular model included:
 - Highly physiologically relevant model of dopaminergic biology
 - Consistent model
 - Scalable

Method:

- Cells differentiated for 6 days in vitro, treated with MPP+ for 2 days
 - Assayed for ATP levels
 - Assayed for caspase 3/7 activity

ATCC[®]

Acta Pharmacologica Sinica (2014) 35: 945-956 © 2014 CPS and SIMM All rights reserved 1671-4083/14 \$32.00

www.nature.com/aps

Cell-based assays for Parkinson's disease using differentiated human LUHMES cells

Xiao-min ZHANG^{1, 2}, Ming YIN¹, Min-hua ZHANG^{2, *}

Acta Pharmacologica Sinica (2014) 35: 945-956 © 2014 CPS and SIMM All rights reserved 1671-4083/14 \$32.00 www.nature.com/aps

Cell-based assays for Parkinson's disease using differentiated human LUHMES cells

Xiao-min ZHANG^{1, 2}, Ming YIN¹, Min-hua ZHANG^{2, *}

Original Article

Acta Pharmacologica Sinica (2014) 35: 945-956 © 2014 CPS and SIMM All rights reserved 1671-4083/14 \$32.00 www.nature.com/aps

Cell-based assays for Parkinson's disease using differentiated human LUHMES cells

Xiao-min ZHANG^{1,2}, Ming YIN¹, Min-hua ZHANG^{2,*}

Original Article

SB216763 (µmol/L)

Summary

- LUHMES cells are precursor cells isolated from 8 week embryonic ventral mesencephalon.
- LUHMES cells are easily differentiated into neurons upon the addition of minimal growth factors including, GDNF, cAMP, and tetracycline.
- LUHMES cells express mature neuronal markers including NeuN and βIII tubulin.
- Expression of various dopaminergic genes including tyrosine hydroxylase, dopamine decarboxylase, the dopamine transporter, and dopaminergic receptors are observed by qPCR.
- Experiments using a calcium sensitive fluorescent dye indicate the presence of neuronal activity, as well as the presence of functional glutamate receptors.

Summary

- Expression of various markers including α-synuclein, LRRK2, PINK1, and Parkin makes LUHMES cells a useful cellular model for studying neurodegenerative diseases including PD.
- Expression of the dopamine 2 receptor subtype, make this line useful for studies related to various neuropsychiatric disorders, including Schizophrenia.
- LUHMES cells can be differentiated into a homogenous population of dopaminergic neurons that can be used to study dopaminergic biology or develop/execute assays for Parkinson's related studies.

Thank you!

Register for more webinars in the ATCC[®] "*Excellence in Research*" webinar series at <u>www.atcc.org/webinars</u>.

October 30th, 2014 10:00 AM, 3:00 PM ET Dr. Francisco Bizouarn *Precise Counting Of Targeted Nucleic Acids Has Never Been Easier*

November 13th, 2014 10:00 AM, 3:00 PM ET Dr. John Pulliam *3-D Tissue Modeling*

The ATCC[®] *"Excellence in Research"* webinar series returns in Spring 2015. Look for webinars starting in February at <u>www.atcc.org/webinars</u>.

Thank you for joining today! Please send additional questions to <u>tech@atcc.org</u>