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Inconvenience of primary cell culture
The Hayflick Limit

Who: Leonard Hayflick

When: 1965

Methods: Normal diploid cells were serially
passaged in culture until they stopped
dividing

Institution: Wistar Institute

Where: Philadelphia, PA, U.S.A

Primary human cell strains each have a
characteristic replicative lifespan or
"doubling potential", and that this lifespan is
an intrinsic characteristic that can differ
between strains.
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Phase lll represents the period when cell
replication ceases but metabolism continues.
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Telomere and telomerase: The history

Cloning of hTR
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1994
Development of the
PCR-based"TRAP assay"

1998
Ectopic expression of
telomerase in normal

fibroblasts
and epithelial cells bypasses
the Hayflick's limit

'™ The Nobel Prize in Physiology or
¥ Medicine 2009

“for the discovery of how chromosomes are protected by
telomeres and the enzyme telomerase”
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Bypass replicative senescence by telomerase
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Immaortal cancer cells

Regulation of telomere length in normal and cancer cells by telomerase
Expert Reviews in Molecular Medicine©2002 Cambridge University Press

ATCC Keith WN, et al. Expert Reviews in Molecular Medicine, April 22, 2002.
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Extension of Life-Span by
Introduction of Telomerase into
Normal Human Cells

Andrea G. Bodnar,” Michel Ouellette,” Maria Frolkis,
Shawn E. Holt, Choy-Pik Chiu, Gregg B. Morin,
Calvin B. Harley, Jerry W. Shay, Serge Lichtsteiner,{
Woodring E. Wrightt

Normal human cells undergo a finite number of cell divisions and ultimately enter a
nondividing state called replicative senescence. It has been proposad that telomers
shortening is the molecular clock that triggers senescence. To test this hypothesis, two
telomerase-negative normal human call types, retinal pigment epithelizl calls and fore-
skin fibroblasts, were transfected with vectors encoding the human telomerase catalytic
subunit. In contrast fo telomerasa-negative control clones, which exhibited telomers
shortening and senescence, telomerase-expressing clones had elongated talomeres,
divided vigorously, and showed reduced staining for p-galactosidass, a biomarker for
senescence. Notably, the telomerase-gxpressing clones have a normal karyetype and
have already exceeded their normal life-span by at least 20 doublings, thus establishing
a causal relationship between telomera shertening and in vitro cellular senascance. The
ability to maintain normal human cells in a phenotypically youthful state could have
important applications in research and medicine.
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Immortalization of normal human cells by hTERT
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immortalization
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7 Telomerase AN p53/p21 N p16/pRB Other Methods
hTERT SVv40T HPV-16 E7 Feeder culture (3T3)
HPV-16 E6 HPV-16 E6 CDK4 Rho-associated kinase inhibitor (Y-27632)
Myc T58A Bmi-1 Physiological Oxygen (2-5%)




Tools for cell immortalization

Plasmids and Reagents | ATCC® No.

hTERT

SV40-Baylor

HPV-16 E6/E7

CDK4

Bmi-1

3T3 Feeder Cells
ROCK Inhibitor Y-27632

ATCC

MBA-141

VRMC-3™

CRL-2203™,45113D

MGC-19704, MGC-4678, MGC-3719
81582D, MGC-12685

CCL-92™ 48-X™

ACS-3030
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Create your own immortalized cell lines

Overview of hTERT immortalized cell lines from
ATCC

Examples of hTERT immortalized cell lines




hTERT immortalized cell lines from ATCC

Tissue Cell Type ATCC® No Designations Comments
Breast Mammary Epithelial CRL-4010™ hTERT-HME1 Normal adult
Bone Bone Cartilage Fibroblast CRL-2846™, CRL-2847™ CHON-001, CHON-002 Normal fetal
Esophagus Barrett's Esophageal CRL-4027™, CRL-4028™,  CP-A, CP-B, Pre-malignant sample
Epithelial CRL-4029™, CRL-4030™ CP-C, CP-D
Eye Retinal Pigment Epithelial CRL-4000™ hTERT-RPE1 Normal
Kidney Angiomyolipoma CRL-4004™ UMB1949 Angiomyolipoma
CRL-4008™ SV7tert PDGF tumor-1 Autocrine transformation and
epigenetic changes
Proximal Tubule Epithelial CRL-4031™ RPTEC/TERT1 Normal adult
Lung Bronchial Epithelial CRL-4011™ NuLi-1 Normal adult
CRL-4013™, CRL-4015™,  CuFi-1, CuFi-4, Cystic Fibrosis
CRL-4016™, CRL-4017™ CuFi-5, CuFi-6
CRL-4051™ HBEC3-KT (coming soon) Normal adult
Small Airway Epithelial CRL-4050™ HSAEC1-KT (coming soon) Normal adult
Pancreas Pancreatic Duct CRL-4023™ hTERT-HPNE Normal adult
CRL-4036™, CRL-4037™, hTERT-HPNE E6/E7, E6/E7/st,  Stepwise oncogenic
CRL-4038™, CRL-4039™ E6/E7/K-RasG12D, E6/E7/K- transformation
RasG12D/st
Skin Foreskin Fibroblast CRL-4001™ BJ-5ta Normal neonatal
Keratinocyte CRL-4048™ Ker-CT (just released) Normal neonatal
Dermal Fibroblast CRL-4005™ TelCOFS02MA (just released) COFS
Uterus Endometrium Stromal CRL-4003™ T HESCs Normal adult
Vascular  Microvascular Endothelial CRL-4025™ TIME Normal neonatal

Microvascular Endothelial CRL-4045™

TIME-GFP (just released)

Stable GFP expression

Microvascular Endothelial CRL-4049™

NFKB-TIME (just released)

NanoLuc reporter line

Aortic Endothelial CRL-4052™

TeloHAEC (coming soon)

Normal adult

@ Adipose

ATCC

Mesenchymal Stem Cell SCRC-4000™

ASC52telo (just released)

Normal Adult
12



History of cell culture, telomerase, and cell
iImmortalization

Create your own immortalized cell lines

Overview of hTERT immortalized cell lines from
ATCC

Examples of hnTERT immortalized cell lines




hTERT Immortalized Endothelial Cell Lines -

Good endothelial cell models

Over-expression of ectopic telomerase can immortalize endothelial
cells isolated from diverse tissues sources, e.g., umbilical cord vein,
dermis of juvenile foreskin, aorta, etc.

Extended lifespan with normal diploid karyotype

Normal endothelial cell phenotype/function
Surface markers and receptors (PECAM-1/CD31, VEGFR2, Tie-2)
Ac-LDL uptake (LDL receptor functional assay)
Neoangiogenesis — Tubule formation on basement membrane gel

ATCC’s hTERT-immortalized endothelial cells collection

ATCC® Cat. No. | Cell Line

CRL-4052™ TeloHAEC  Normal adult aortic endothelial cells (coming soon)

CRL-4025™ TIME Foreskin microvascular endothelial cells

CRL-4045™ TIME-GFP  Foreskin microvascular endothelial cells with constitutive
expression of EmGFP®

CRL-4049™ NFkB-TIME Foreskin microvascular endothelial cells with NanoLuc® reporter

expression under the control of NFKB response elements

14
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TeloHAEC - immortalized aortic endothelial cell line

10071 @ Primary HAEC

4 TeloHAEC
80 -

°*1  hTERT

transduction
40+

Accumulative PDL

20

)

Days in culture

Karyotype
Sample

Normal Diploid Karyotype

TeloHAEC
Media

Cell Basement Membrane Gel

i Tubule formation on

ATCC® CRL-4052™

ATCC® PCS-100-030

ATCC® PCS-110-040 (BBE Kit)
ATCC® PCS-110-041 (VEGF Kit)

ATCC® ACS-3035

Basement Membrane Gel

15



TeloHAEC - consistent functionality over time

ATCC

A.

relative mean fluorescence

% of positive cells

Upregulation of CD54/ICAM -1

40" @ Primary HAEC

35- 1 TeloHAEC @ 35 PDL
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Cell Growth

2.5

2.0

Upregulation of CD106/VCAM -1
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4 TeloHAEC @ 35PDL
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VEGF-stimulated cell growth
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* TeloHAEC @ 68PDL
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TeloHAEC — phenotypic angiogenesis assay

0 ng/mL VEGF 1 ng/mL VEGF

4 ng/mL VEGF 8 ng/mL VEGF

4 ng/mL VEGF 4 ng/mL VEGF
Withdraw at day 7 Withdraw at day 10

50 yM suramin 50 pM suramin
Added on day 7 Added on day 10

Long-term tubule formation in co-culture of endothelial cells and fibroblasts

Tubule formation in co-culture assay

!1.

(mm/mm2)

CD31+ tubule length

= B

VEGF (ng/mL)

Endothelial cells co-cultured with mesenchymal
cells produce stable tubular structure that appears
more representative of capillary formation in vivo.

TeloHAEC cells are co-cultured with BJ fibroblast
for 14 days, and stained with anti-CD31 to reveal

tubular structure.
17



Tubule formation on co-culture
Day 14, CD31

Co-cultured with BJ Cells

TIME ATCC®CRL-4025™

Media ATCC®PCS-100-030
ATCC®PCS-110-040 (BBE Kit)
ATCC®PCS-110-041 (VEGF Kit)

Cell Basement Membrane Gel

CD31

18




Genetic engineered cell lines derived from
hTERT-immortalized endothelial cells

TIME-GFP (ATCC® CRL-4045™)

Dlerive_g by transfecting TIME (ATCC® CRL-4025™) cells with linearized pWE2-EmGFP
plasmi

Clonal cell line selected based on its stable expression of EmGFP® driven by CMV
promoter

NFkB-TIME (ATCC® CRL-4049™)

Derived by transfecting TIME (ATCC® CRL-4025™) cells with linearized pNL3.2-
Nluc/NF-kB-RE/Hygro plasmid

Clonal cell line selected based on its high expression of NanoLuc® reporter in response
to TNFa

Both TIME-GFP and NFkB-TIME are:

Diploid cell line with a chromosome number of 46

Positive for endothelial cell markers as the parental TIME cells (CD31, AcLDL uptake,
VEGFR-2, Tie-2)

Tubule formation on Gel
Tested for at least 15 population doublings after recovery from cryopreservation

e

® 19
ATCC NanoLuc® is a trademark of Promega, and EmGFP®is a trademark of Life Technologies.



TIME-GFP - consistent endothelial phenotype over

extended culture

=¢=\/EGF medium =E=BBE medium

Accummulative PDL

10 20 30 40
Days in culture

GO0 200

400

Count

TIME (control)

TIME-GFP/VEGF kit

L /men‘

wd o owt wt B
FL1-A




TIME-GFP - GFP expression facilitates real-time
analysis

TIME Primary
-GFP HDMVEC

S ™ VEGFR2

p—— TIE2

W -tubulin

Vehicle

The GFP-expressing cells migrate and coalesce
into networks of vessel-like structures within 10
hours after being plated onto Cell Basement
Membrane Gel (ATCC® ACS-3035™). The
stable expression of GFP in these cells enables
the detection and analysis of the fragile
endothelial structures to occur without post-assay
fixation and/or staining.

30 nM
Suramin
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NFkB-TIME — NanoLuc® reporter expression
correlates with endogenous marker

e

CD54/ICAM-1 Expression Nano-Glo Luciferase Assay
6 100~
= TIME ® NFKB-TIME/BBE kit
=+ NFKB-TIME “ NFKB-TIME/VEGF kit °
c 9 | c 80-
2 o 3
whd 4_ =
5 = S god
o o
£ 3+ ° £
qc; ; 40
T 2T S
© [ u‘:
T8 20
1_
0__I-I'I'I'I'I'I'I| ||||I'I'I'I| ||||I'I'I'I| ||||I'I11'| ||||I'I'I'I| ||||I'I'I'I'| ||||I'I11'| 0 -

-6 -13 -12 -11 -10 -9 -8 -7 -6

Log (TNFa) g/mL
Log (TNFa) g/mL

TME T NFKB-TIVE NFKB-TIME/BBE kit | NFKB-TIME/VEGF kit
EC50 | 3.868e-010 | 5.5906-010 EC50 | 4.395e-010 2:427e-010

NFkB-TIME (ATCC® CRL-4049™) expresses NanoLuc® luciferase regulated by multiple copies of
the NFkB response element. When the cells are exposed to inflammatory cytokine such as TNFa,
activation of the NFkB signaling pathway results in increased NanoLuc® luciferase activity. The high
sensitivity, excellent signal/background ratio, and simple single-addition assay makes this reporter
cell line an ideal replacement for the cumbersome and highly variable CD54/ICAM-1 activation

assays.
22
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NFKkB-TIME — use of NanoLuc® reporter increases
assay sensitivity

-

Nano-Glo Luciferase Assay Luminescence (RLU)
Cells/well
.0%10 [ untreated Untreated 100 ng/mL TNFa
Il TNFg 100 ng/mL
160

)
= towiol 6,561 29,228 £2,153 4,664,244 + 786,091
S om0 2,187 10,347 578 1,297,479+301,887 125
<
(&)
O
o 1o 729 3812+1482  418410£57,006 110
c
p - 243 1,394 £ 349 150,531+ 38,821 108
1.0%10°
>S5
-
81 528 + 89 41,651 £ 18451 79
1.0%10°?
6,561 2,187 729 243 81

Number of cells/well

A variable number of NFKB-TIME (ATCC® CRL-4049™) cells were seeded into a 96-well plate and
incubated for 24 hours in culture medium. The cells were then exposed to 100 ng/mL TNFa for 3
hours to activate the NFkB signaling pathway. Comparable fold of induction (FOI) of luminescence
was observed within a wide range of cell seeding densities. Less than 100 cells/well produced
significant activation of the reporter gene expression.

ATCC NanoLuc® and Nano-Glo are trademarks of Promega
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Ker-CT (CRL-4048™) — immortalized keratinocytes
that retain intact differentiation capability

Ker-CT cell line was immortalized by human telomerase and CDK4 from
neonatal foreskin keratinocyte culture (Deposited by Dr. Shay, UTSW)

Ramirez R, et al. Oncogene 22(3): 433-44, 2003.

Ker-CT culture

35.0

DLs
N W
o O
o O

eP
N
o
o

15.0

10.0 /

5.0

o.o/ —
0 5 10 15 20 25 30 35

Days in Culture

Accumulativ

Proliferating

BJ + Ker-CT

y-Catenin

Differentiation
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o
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©
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RPTEC/TERT1 (CRL-4031™) — a new RPTEC cell

line overcomes limitations of existing renal cell models

Primary Cells

Obtaining primary cultures from the kidney is hampered by the fact that there
are 15-20 cell types in the kidney cortex and the nephron. Homogeneous
cultures retaining physiological functions are hard to obtain.

Immortal renal epithelial cell lines

Cell Line Nephron Segment of origin

LLC-PK1 Yorkshire Pig Proximal nephron

OK North American Opossum Proximal nephron

JTC-12 Monkey Proximal nephron

MDCK Dog Collecting duct

A6 Xenopus laevis Distal tubule

HK-2 Human HPV16-transformed, Proximal/Distal?
Caki-1 Human Kidney carcinoma

HEK293/OATs Human OATSs over-expressing lines

None of the continuous renal epithelial cell lines fully express all the
needed differentiated functions known from the ancestor cells in vivo

25
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RPTEC/TERT1 — extended lifespan and stable
karyotype

arter

Population doublings

LB

. Karyotype
= RPTEC/TERT1 Sample ™ 4 ) .-
.z = Primary RPTEC ~ ¢ Ry E
i & gb é B (
_F ‘7, ‘3 2 3 ' 8 5
5 404 . '
o -
IR IR
: " ﬂ ‘ 5 " ! E g9
F 6 T [ 9 10 1" 12
E 217 - v a 1 . o ;
i 20 e 3! 28 Ba 88 ﬁg 53
:\:..' .._,-’.-. 13 15 16 17 18
= -
: 4 i
= s Bd 86 A4 4d J
04 1 , ~r— . |
0 40 80 120 1t RPTEC/TERT1 at P21
Days After recovery from cryopreservation

The RPTEC/TERT1 cells propagate well and retain a normal
male karyotype after extended culture in serum-free medium.
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RPTEC/TERT1 — homogenous population

Cadherin

E

CD13/APN

The RPTEC/TERT1 cells show uniform expression of E-
cadherin and CD13(Aminopeptidase N), while primary RPTEC

cells expression of these markers are highly variable.

e
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G0 =
Primary RPTEC

- RPTEC/TERT1

M - mock A "J_%“'
% Caco-2 " —3

&0 —

00—

Prima RPTEC

TEER (£ » cm?)

RPTEC/TERT1

Dome-like structures (indicated by the arrows) form as water and solutes are transported across the
cell layer and become trapped underneath; the development of these structures is a good indicator
of intact epithelium formation. Similarly, the formation of an intact epithelium can be demonstrated
by stabilized Trans-Epithelial Electrical Resistance (TEER). RPTEC/TERT1 cells exhibit both
dome-like structures and stabilized TEER, while the primary RPTEC cells do not possess either
feature of intact epithelial formation.
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RPTEC/TERT1 - other interesting features

Blood Urine
OAT4
OATP4CI URATI
OCT2 PEPT1, PEPT2
OATI MRP2, MRP4
OAT2 MATE], MATE2-K

P-gp
OCTNI, OCTN2

OAT3

Giacomini KM, et al. Nature Reviews Drug Discovery 9: 215-236, 2010.
M s  ABCC4/MRP4
" ABCC2/ MRP2

S ABCB1 / MDR1 (P-gp)
e s OATP4C1
s WS SLCA47A1/ MATE1

B8 SLC22A12/ URAT1
T P K
RPTEC/TERT1 (CRL-4031™)
Parental primary RPTEC

ATCC Kidney tissue

RPTEC/TERT1

SO Y i & D!
7 i Pl 5

Wieser M, Stadler G, Jennings P, et al. Am J Physiol Renal Physiol 295(5): F1365-75, 2008.

Control Nifedipine OTA KBro,

6 hr

24 hr

Radford et al. AJP - Renal Physiol 302(8): F905-F916, 2012.



hTERT immortalized cells provide unique tools

Primary cells | hTERT immortalized SR V] Cancer cell lines
immortalized

Mimic in vivo Tissue P
Phenotype

. . o Diploid / Near diploid / .
Genotypic Stability Diploid Near diploid Aneuploid Aneuploid
Proliferative Capacity + _ +++ +++
Supply + +++ +++ +++
Inter-Experimental
Cost High Medium Low Low

Pros and cons of different cell models for tissue-relevant functional studies

f hTERT immortalized cells combine the in vitro nature of primary
cells and the ability to be cultured continuously, avoiding the
limitations of both types while still reaping their benefits.
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Thank you!

Register for more webinars in the ATCC “Excellence in Research”
webinar series at www.atcc.org/webinars.

April 24, 2014

10:00 AM, 3:00 PM EST

Dr. Fang Tian will highlight cell lines that can be used to address recently identified
genomic and clinical features of breast cancer subtypes.

May 8, 2014

10:00 AM, 3:00 PM EST

Liz Kerrigan will discuss the importance of molecular standards, and how their use can
contribute to improvements in assay reproducibility and reliability.

&l June 5, 2014

10:00 AM, 3:00 PM EST

Dr. Doug Storts and Dr. Yvonne Reid will discuss the recent advances in STR profiling
technologies and how the Standard STR protocol is transforming scientific practices.

Thank you for joining today!
Please send additional questions to tech@atcc.org
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