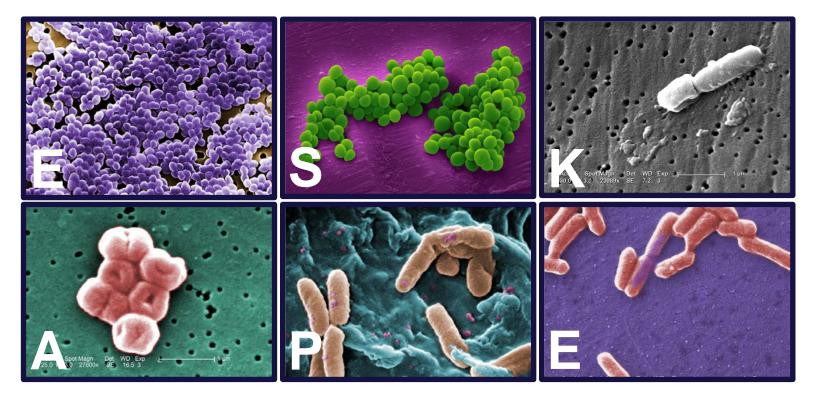

DRUG-RESISTANT ACINETOBACTER BAUMANNII – A GROWING SUPERBUG POPULATION

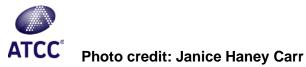
Cara Wilder Ph.D. Technical Writer March 13th 2014

THE ESSENTIALS OF LIFE SCIENCE RESEARCH GLOBALLY DELIVERED*

ATCC

- Founded in 1925, ATCC is a non-profit organization with headquarters in Manassas, VA
- ATCC serves and supports the scientific community with industry-standard products and innovative solutions
- World's leading biological resource center and provider of biological standards
- Broad range of biological materials
 - Microorganisms
 - Cell lines
 - Derivatives
 - Bioproducts





Drug-resistance

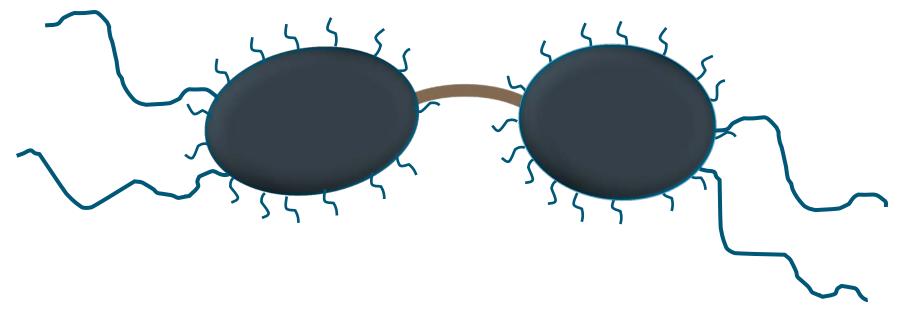
- Drug-resistant bacteria are an emerging threat.
- Bad Bugs, No Drugs = No "ESKAPE"

Antibiotic resistance – Evolution & spread

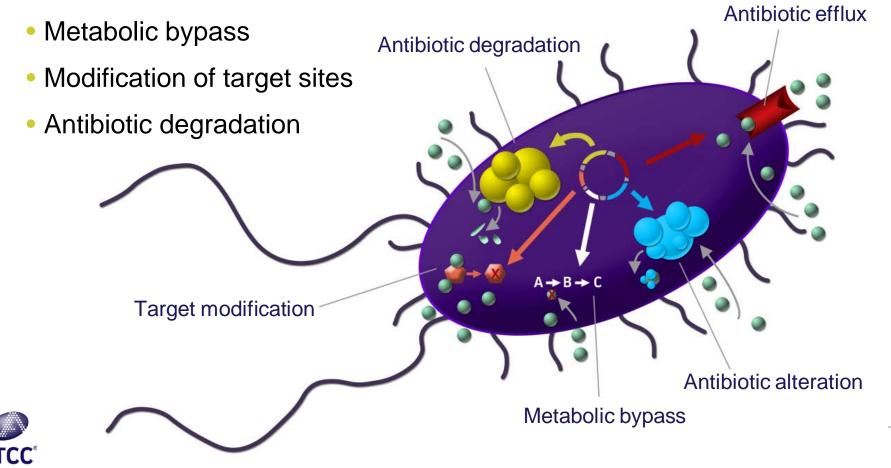
Evolution of MDR strains

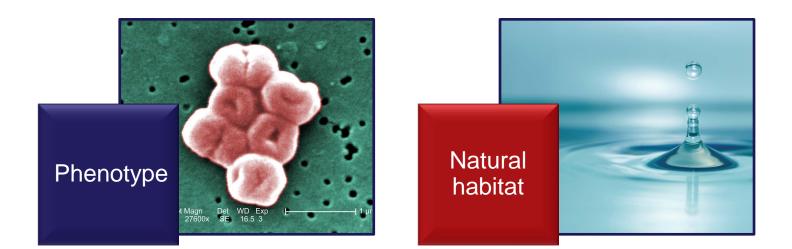
- Inadequate infection control practices
- Overuse of antibiotics
- Misuse of antibiotics

Dissemination within and between patients


- Invasive medical devices and procedures
- Inadvertent transmission
- Patient transfer between healthcare facilities
- Global travel and medical tourism

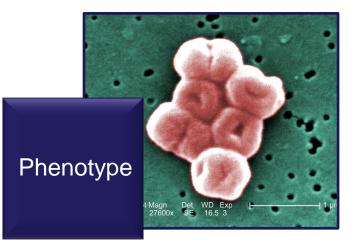
Antibiotic resistance – Evolution & spread


- Inherent resistance
- Genetic mutation
- Horizontal gene transfer

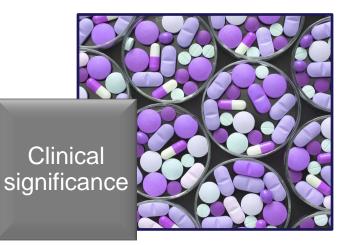


Antibiotic resistance – Mechanisms

- Reduced drug accumulation
- Antibiotic alteration



- Grows at various temperatures
- Resistant to low humidity
- Survives on a variety of surfaces



- Grows at various temperatures
- Resistant to low humidity
- Survives on a variety of surfaces
- Aquatic environments
- Soil
- Moist tissues

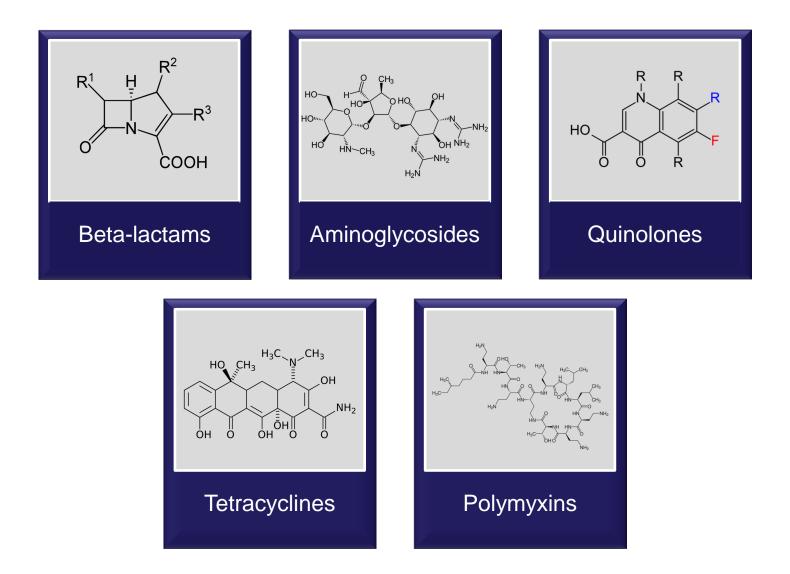
- Grows at various temperatures
- Resistant to low humidity
- Survives on a variety of surfaces
- Aquatic environments
- Soil
- Moist tissues

- Opportunistic pathogen
- Nosocomial infections
- Drug-resistance

Acinetobacter baumannii – Infections

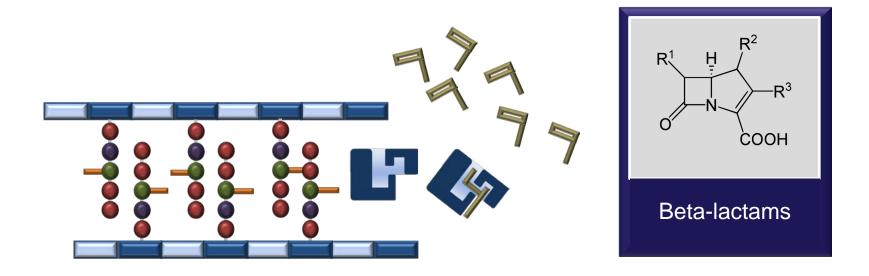
Manifestation	 Pneumonia, bacteremia, meningitis, urinary tract infection, central venous catheter-related infection, and wound infection
Community- acquired infections	 May be related to underlying conditions such as alcoholism, diabetes, or cancer
Hospital-acquired infections	 Acquired by healthy or immunologically compromised patients Associated with wounds and invasive procedures
Wartime-acquired infections	 Associated with wounded soldiers in non-native conflict zones

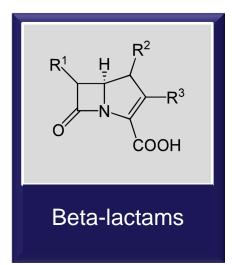
Antibiotic resistance – Definitions

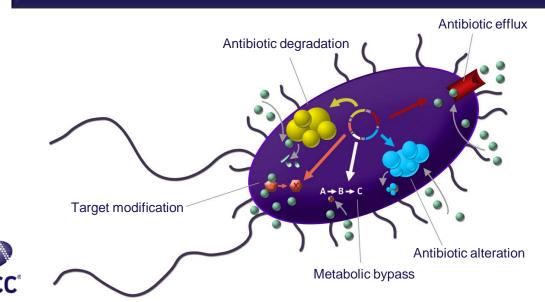


Antibiotic resistance – Definitions

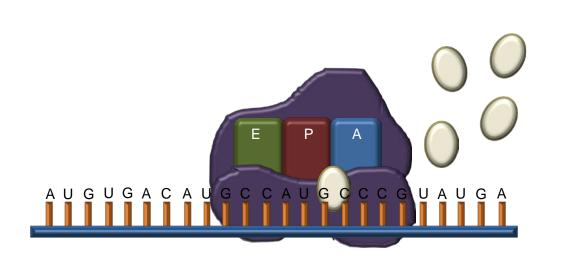
Pan drug-resistance (PDR)						
XDR strain	Extensive drug-resistance	(XDR) Multidrug-resistance (MDR)				
+ Resistance to polymyxins and tigecycline	MDR strain + Resistance to carbapenems	Resistant to 3 or more classes of drugs: Cephalosporins/Penicillins Fluoroquinolones Aminoglycosides				

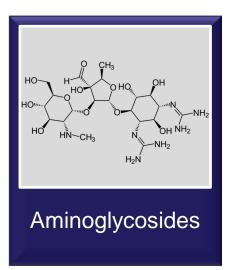


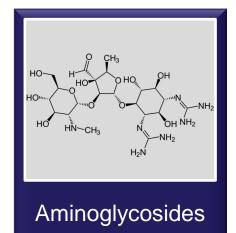


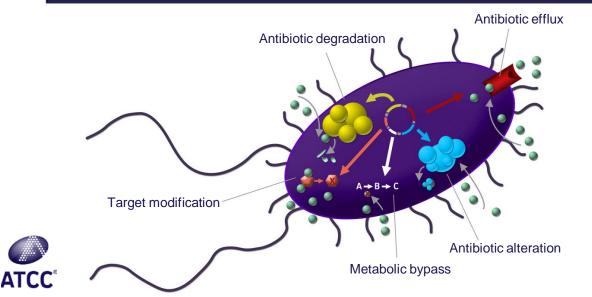

AdeABC efflux pump

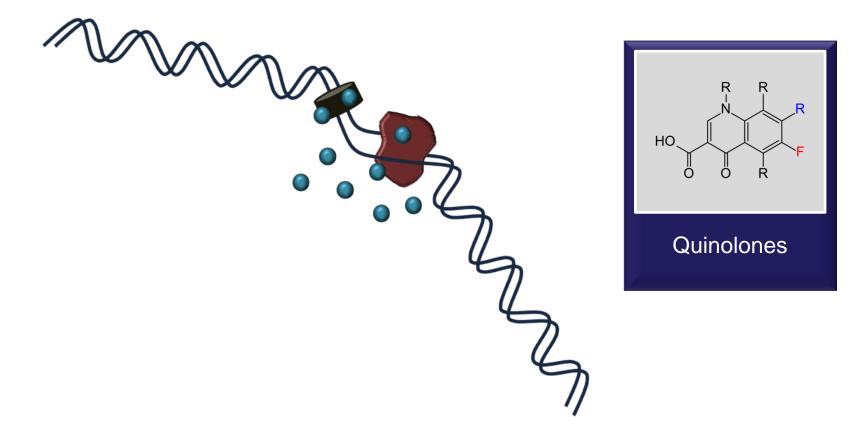
Reduction in porin number


Reduced penicillin binding protein expression

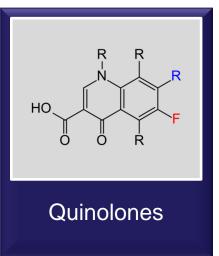

Beta-lactamases

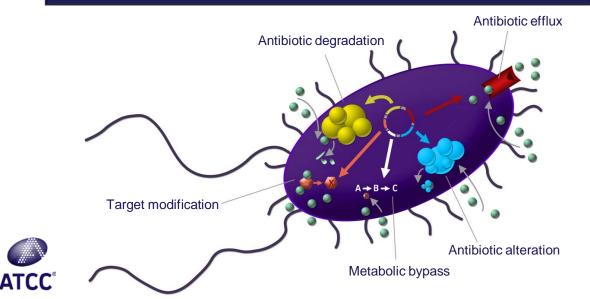


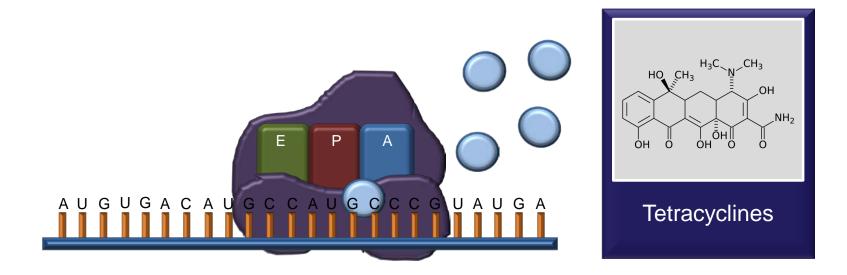



AdeABC efflux pump

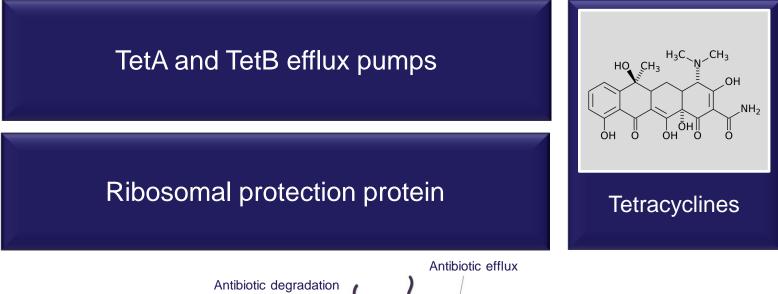
Aminoglycoside modifying enzymes

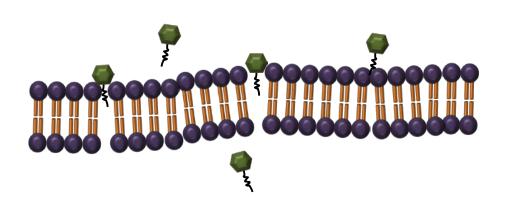


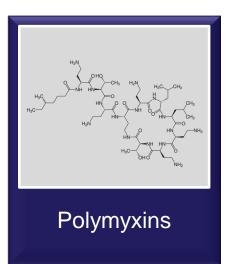


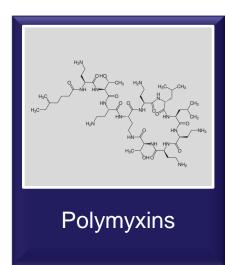

AdeABC efflux pump

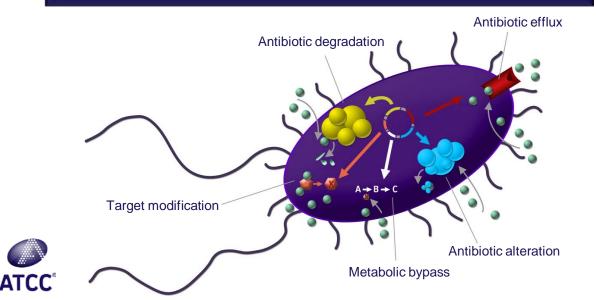
Modification of the genes encoding the DNA gyrase or topoisomerase IV











Lipopolysaccharide modification through acidification, acylation, or the presence of antigens the interfere with antibiotic binding

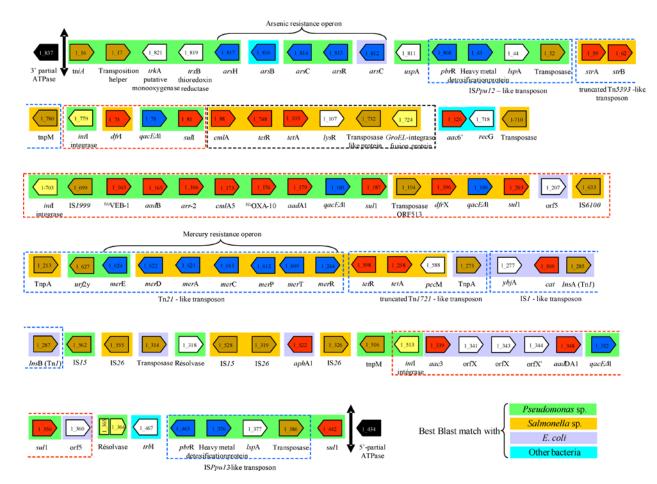


Figure 2. Layout of the Complete AbaR1 Inserted into the AYE strain ATPase-Encoding Gene

Fournier P-E, Vallenet D, Barbe V, Audic S, et al. (2006)

ATCC

Therapeutics

Pan drug-resistance (PDR)		
XDR strain + Resistance to polymyxins and tigecycline Combination therapy	Extensive drug-resistance	(XDR) Multidrug-resistance (MDR) Resistant to 3 or more classes of drugs: Cephalosporins/Penicillins Fluoroquinolones Aminoglycosides
Combination therapy	Polymyxins Tigecycline	Carbapenems Polymyxins

Emerging therapeutic approaches

Vancomycin encapsulated in fusogenic liposomes Nicolosi D, et al. Int. J. Antimicrob. Agent 35(6): 553-558, 2010.

Antimicrobial peptides

Routsias JG, et al. Peptides 31(9): 1654-1660, 2010.

Efflux pump inhibitors

Pannek S, et al. J. Antimicrob. Chemother. 57(5): 970-974, 2006.

Antisense agents (e.g. RNAi)

Woodford N, Wareham DW. J. Antimicrob. Chemother. 63(2): 225-229, 2009.

- Geographical location of bacteria
- Hospital-specific localization



Geographical location of bacteria

• Hospital-specific localization

- Length of stay
- Procedure performed
- Treatment

Geographical location of bacteria

Hospital-specific localization

- Length of stay
- Procedure performed
- Treatment
- Implementation of new practices to reduce the occurrence of infection

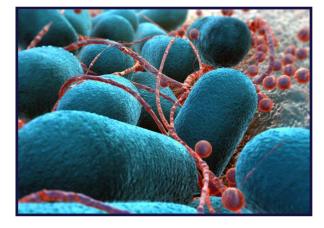
Improve sanitation procedures and barrier precautions

Reduce patient-topatient contact

Use disposable equipment

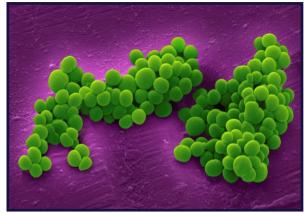
Limit indwelling devices

Establish a surveillance plan



Practice antimicrobial stewardship

ATCC – Aiding the scientific community


ATCC provides top-quality, authenticated reference strains and associated molecular materials

Enhance diagnostics

Analyze novel therapeutics

Improve sterility protocols

ATCC – Acinetobacter baumannii

Drug-Resistant Acinetobacter baumannii Research Materials

ATCC [®] No.	Species	Designation	Isolation
BAA-1605™	Acinetobacter baumannii	-	Human sputum
BAA-1789™	Acinetobacter baumannii	-	Tracheal aspirate
BAA-1790™	Acinetobacter baumannii	-	Sputum
BAA-1791™	Acinetobacter baumannii	-	Induced sputum
BAA-1792™	Acinetobacter baumannii	-	Sputum
BAA-1793™	Acinetobacter baumannii	-	Sputum
BAA-1794™	Acinetobacter baumannii	-	Sputum
BAA-1795™	Acinetobacter baumannii	-	Nasotracheal aspirate
BAA-1796™	Acinetobacter baumannii	-	Sputum
BAA-1797™	Acinetobacter baumannii	-	Human blood
BAA-1798™	Acinetobacter baumannii	-	Sputum
BAA-1799™	Acinetobacter baumannii	-	Sputum
BAA-1800™	Acinetobacter baumannii	-	Deep trachea

Drug-resistant clinical isolates

ATCC – Strain authentication

Phenotypic analysis

Colony morphology Bacterial morphology Biochemical analysis

Genotypic analysis

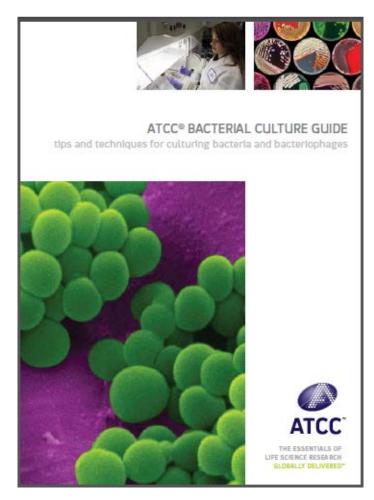
16S rRNA sequencing Ribotyping

ATCC – Verification of drug-resistance

Antibiotic profiling using VITEK

Penicillins Cephalosporins Carbapenems Quinolones Aminoglycosides Tetracycline Tigecycline

ATCC – Acinetobacter baumannii


ATCC® Drug-Resistant Acinetobacter baumannii - Antibiotic Profiles

		BAA-1605**	BAA-1789**	BAA-1790**	BAA-1791**	BAA-1792**	BAA-1793"	BAA-1794**	BAA-1795**	BAA-1796**	BAA-1797**	BAA-1798"	BAA-1799**	BAA-1800**
	Amoxicillin/Clavulanic Acid	NT	R	R	R	R	R	R	R	R	R	R	R	R
Penicillins	Ticarcillin	R	1	R	R	R	R	R	R	R	R	R	R	R
	Ticarcillin/Clavulanic acid	NT	1	R	R	R	R	R	R	R	R	R	R	R
	Piperacillin	R	R	R	R	R	R	R	R	R	R	R	R	R
Pei	Pipericillin/Tazobactam	NT	R	R	R	R	R	R	R	R	R	R	R	R
	Ampicillin	NT	R	R	R	R	R	R	R	R	R	R	R	R
	Ampicillin/Sulbactam	NT	S	1	S	R	S	S	R	S	S	S	R	S
	Cefalotin	NT	R	R	R	R	R	R	R	R	R	R	R	R
	Cefuroxime	NT	R	R	R	R	R	R	R	R	R	R	R	R
	Cefuroxime Axetil	NT	R	R	R	R	R	R	R	R	R	R	R	R
	Cefotetan	NT	R	R	R	R	R	R	R	R	R	R	R	R
rins	Cefpodoxime	NT	R	R	R	R	R	R	R	R	R	R	R	R
Cephalosporins	Cefotaxime	NT	R	R	R	R	R	R	R	R	R	R	R	R
halc	Ceftizoxime	NT	R	R	R	R	R	R	R	R	R	R	R	R
Cep	Cefazolin	NT	R	R	R	R	R	R	R	R	R	R	R	R
	Cefoxitin	NT	R	R	R	R	R	R	R	R	R	R	R	R
	Ceftazidime	R	R	R	R	R	R	R	R	R	R	R	R	R
	Ceftriaxone	NT	R	R	R	R	R	R	R	R	R	R	R	R
	Cefepime	R	R	R	R	R	R	R	1	R	R	R	R	R
enems	Meropenem	NT	R	R	R	R	R	R	R	R	R	R	R	R
Carbapenems	Imipenem	R	I	R	R	R	R	R	S	R	R	R	R	R
	Nalidixic acid	NT	R	R	R	R	R	R	R	R	R	R	R	R
nes	Moxifloxacin	NT	R	R	R	R	R	R	R	R	R	R	R	R
Quinolones	Norfloxacin	NT	R	R	R	R	R	R	R	R	R	R	R	R
Qui	Ciprofloxacin	R	R	R	R	R	R	R	R	R	R	R	R	R
	Levofloxacin	NT	R	R	R	R	1	1	R	1	1	R	R	1
R = 1	Resistant, S = Susceptible, I = Intermediate susceptibility, NT = Not tested													

R = Resistant, S = Susceptible, I = Intermediate susceptibility, NT = Not tested

Bacteriology guide

Chapters included:

- Getting started with an ATCC bacterial strain
- Bacterial growth and propagation
- Growth media
- Preservation
- Biosafety and disposal
- Bacterial authentication
- Bacterial applications

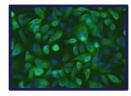
Available on the ATCC website www.atcc.org

Conclusion

- Multidrug-resistant, extensive drug-resistant, and pan drug-resistant A. baumannii strains are an emerging problem throughout the world
- ATCC acquires, authenticates, and distributes clinically-relevant strains that are essential to the scientific community
 - Phenotypic, genotypic, functional testing
- Drug-resistant strains of *A. baumannii* are now available at ATCC
 - Clinical strains
 - Antibiotic susceptibility profiles available

Identity Purity Authenticity Homogeneity Stability Functionality

Comparability Quality Reproducibility Standardization Development Verification


Sources

- Durante-Mangoni E, Zarrilli R. Global Spread of Drug-resistant Acinetobacter baumannii. Future Microbiol. 6(4): 407-422, 2011.
- Manchanda V, Sanchaita S, Singh NP. Multidrug Resistant Acinetobacter. J Glob Infect Dis. 2(3): 291-304, 2010.
- Howard A, O'Donoghue M, Feeney A, Sleator RD. Acinetobacter baumannii An emerging opportunistic pathogen. Virulence 3(3): 243-250, 2012.
- Maragakis LL, Perl TM. Acinetobacter baumannii: Epidemiology, Antimicrobial Resistance, and Treatment Options. Antimicrobial Resistance, Invited Article. April 2008.
- APIC. Guide to the elimination of multidrug-resistant *Acinetobacter baumannii* transmission in healthcare settings. 2010.
- Perez F, et al. Global Challenge of Multidrug-Resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy 51(10): 3471-3484, 2007.
- Fournier PE, et al. Comparative Genomics of Multidrug Resistance in Acinetobacter baumannii. PLoS Genet 2(1): e7, 2006.

Thank you!

Register for more webinars in the ATCC "*Excellence in Research*" webinar series at <u>www.atcc.org/webinars</u>.

March 27, 2014 10:00 AM, 3:00 PM EST

Dr. Chengkang Zhang will discuss hTERT immortalized cell lines and their use as relevant models for cancer research.

April 24, 2014 10:00 AM, 3:00 PM EST Dr. Fang Tian will highlight cell lines that can be used to address recently identified genomic and clinical features of breast cancer subtypes.

May 8, 2014 10:00 AM, 3:00 PM EST Liz Kerrigan will discuss the importance of molecular standards, and how their use can contribute to improvements in assay reproducibility and reliability.

Thank you for joining today! Please send additional questions to <u>tech@atcc.org</u>

