

Molecular Studies as a Guide for Designing an Optimal Lyophilization Process for Microbial Preservation



Jyoti K. Jha, PhD Senior Scientist, Cryobiology R&D, ATCC







# About ATCC®

- Founded in 1925, ATCC<sup>®</sup> is a non-profit organization with HQ in Manassas, VA, and an R&D and Services center in Gaithersburg, MD
- World's premier biological materials resource and standards development organization
  - -5,000 cell lines
  - -80,000 microorganisms
  - Genomic & synthetic nucleic acids
  - Media/reagents

- ATCC® collaborates with and supports the scientific community with industry-standard biological products and innovative solutions
- Growing portfolio of products and services
- Sales and distribution in 150 countries,
   19 international distributors
- Largest portfolio of microbial strains for the academia and industry



### Microbial preservation and industrial requirements

Methods of quantitative preservation and industrial requirements

### Microbes used in industrial applications

Quality control and compendial assays (high- and low-titer microbes)

Quantitative viable microorganisms

### Methods of preservation

Frozen microbes (Storage: -80°C and vapor phase of liquid nitrogen)

Lyophilized microbes (Storage: 4°C and -20°C)

### Potential challenges

Universal formulation for microbial preservation

Storage temperature for quantitative microorganisms



### Overview of the microbial lyophilization process

Freezing, primary drying, and secondary drying







### Lyophilization process optimization for viable strains

Microbial culture

- The lyophilization process differs between organism and should be determined experimentally.
- For our study on *E. coli* (ATCC<sup>®</sup> 8739<sup>™</sup>), early stationary phase culture produced the best result for preservation.

Lyophilization cycle

- The lyophilization cycle can vary from 24 to 120 hours.
- Prolonged lyophilization cycles can impact microbial viability.
- Optimal conditions for the freezing, primary drying, and secondary drying stages need to be determined.

Formulations

- We used 13 formulations containing different carbohydrates, proteins, amino acids, polyols, and mild detergents.
- Two of those formulations were better for our model organims E. coli (ATCC<sup>®</sup> 8739<sup>™</sup>).

Storage

- Storage temperature (4°C, 22°C, and 37°C)
- Lyophilized microbes stored under inert environment and in crimped glass vials



# Stability of E. coli (ATCC® 8739<sup>TM</sup>) in two different formulations





### Lyophilization and viability determination before LC-MS/MS



# E. coli viability for LC-MS/MS samples 109 108 107 106 105 104 1 7 21 42 1 7 21 42 1 7 21 42 Days Stored



### Proteomic characterization of lyophilized E. coli

Proteomic characterization of E. coli in different buffers and storage conditions





### Proteomic characterization of lyophilized E. coli

Fold change in protein expression of E. coli in buffers 1 and 2 while stored at 4°C



|                           | Protein | Family                                   | Function                         |
|---------------------------|---------|------------------------------------------|----------------------------------|
| DNA<br>Modification       | Mod     | Type III restriction-modification system | DNA cleavage                     |
|                           | NohA    | Terminase small subunit                  | Impairing DNA sysnthesis         |
|                           | Ada     | DNA repair enzyme                        | Methylated DNA repair            |
|                           | DeaD    | ATP-dependent RNA helicase               | RNA degradation                  |
|                           |         |                                          |                                  |
| Cold<br>shock<br>proteins | CspA    | Cold shock protein                       | Reduces global protein synthesis |
|                           | CspB    |                                          |                                  |
|                           | CspG    |                                          |                                  |
|                           | CspL    |                                          |                                  |
|                           |         |                                          |                                  |
| Membrane<br>integrity     | LamB    | Maltporin                                | Loss in membrane integrity       |
|                           | ProW    | Transport system                         | Modulation of transport          |
|                           |         |                                          |                                  |
| Stress<br>Condition       | Pet     | Serine protease autotransporter          | Enterotoxic effect               |
|                           | BhsA    | Stress protein                           | Increase cellular stress         |
|                           | FeaR    | Transcriptional activator                | Abnormal cell production         |
|                           | ProX    | Transport system                         | Modulation of transport/stress   |
|                           | proV    | Transport system                         | Modulation of transport/stress   |



## Proteomic characterization of lyophilized E. coli

Fold change in protein expression of E. coli in buffers 1 and 2 while stored at 37°C





## Impact of lyophilization on the E. coli genome



Changes in E. coli genome



### Closing remarks

### **Conclusions**

- We found that an optimized proprietary formulation (buffer #1) stabilizes E. coli better than a conventional formulation (buffer #2).
- Using global proteomic analysis, we demonstrated that the overexpression of cold shock proteins, DNA methylation repair genes (CspA, B, G and L), and a restriction modification enzymes (Mod, NohA) and the underexpression of abnormal cell production genes (FaeR) contributed to the improved stability of *E.* coli in buffer #1 as compared to buffer #2.
- Our whole-genome sequencing analysis of E. coli before and after lyophilization with the optimized proprietary formulation indicated that no significant genomic changes occur during lyophilization or one round of propagation after.

#### **Future work**

- Evaluate how the proprietary formulation (Buffer #1) affects the stability of other microorganisms.
- RNA-seq analysis of the sample to understand the global transcriptome.



Special thanks to:

Rahul Tevatia, PhD, Senior Scientist

John Bagnoli, BS, Senior Manager

Nikhita Puthuveetil, MS, Senior Bioinformatician

Jonathan Jacobs, PhD, Senior Director

Nilay Chakraborty, PhD, MBA, Principal Scientist

### Questions?

