INDUCED PLURIPOTENT AND MESENCHYMAL STEM CELLS – CELLS WITH A LOT OF POTENTIAL

Chengkang Zhang, Ph.D. Senior Scientist ASCB Vendor Showcase Dec. 15, 2013

ATCC iPSC quality standards

Characterization of Parkinson's iPSC lines

Human reference iPSC lines

What are iPSC?

The promise of iPSCs

Overview of ATCC iPSC lines collection

iPSC lines derived from apparent normal donors

	ATCC [®] No.	Designation	Reprogramming System	Tissue and Cells Origin	Disease
NEW	ACS-1019™	ATCC-DYS0100	OSKM / Sendai Virus	Foreskin, Fibroblast	Normal
NEW NEW	ACS-1020™	ATCC-HYS0103	OSKM / Sendai Virus	Liver, Fibroblast	Normal
	ACS-1021™	ATCC-CYS0105	OSKM / Sendai Virus	Heart, Fibroblast	Normal
	ACS-1007™	ATCC-HYR0103	OSKM / Retrovirus	Liver, Fibroblast	Normal
	ACS-1011™	ATCC-DYR0100	OSKM / Retrovirus	Foreskin, Fibroblast	Normal

iPSC lines derived from donors with diseases

ATCC

ATCC [®] No.	Designation	Reprogramming System	Tissue and Cells Origin	Disease
ACS-1012™	ATCC-DYR0530	OSKM / Retrovirus	Skin, Fibroblast	Parkinson's Disease, Asthma, Depression
ACS-1013™	ATCC-DYS0530	OSKM / Sendai virus	Skin, Fibroblast	Parkinson's Disease, Asthma, Depression
ACS-1014™	ATCC-DYP0530	OSKM / Episomal	Skin, Fibroblast	Parkinson's Disease, Asthma, Depression
ACS-1003™	ATCC-DYP0730	OSKM / Episomal	Foreskin, Fibroblast	Down syndrome
ACS-1004™	ATCC-DYP0250	OSKM / Episomal	Skin, Fibroblast	Cystic fibrosis: Homozygous CFTR∆508

ATCC iPSC quality standards

Characterization of Parkinson's iPSC lines

Human reference iPSC lines

iPSC quality control

Description	QC Methods	QC Specification		
Post-Thaw Viable Cell Recovery	hiPSC culture	≥ 30 colonies in 5 days		
Expression of Stem Cell Markers	Immunocytochemistry	Tra1-60, Tra1-81, SSEA-4, Nanog		
Surface Antigen Expression of Stem Cell Markers	Flow Cytometry	Pluripotency (SSEA4, Tra-1-60)>85%Differentiation (SSEA1)<15%		
Karyotype	G banding	Normal karyotype, 46,XY or 46,XX		
Germ Layer Differentiation *	qRT-PCR analysis of EBs	Gene expression relative to pluripotent cells (endoderm, mesoderm and ectoderm layers)		
PluriTest (Transcriptome analysis)	Illumina Human HT-12v4 Expression Beadchip	Pluripotency and Novelty Scores		
Sterility (Bacterial and Fungal Testing)	Growth on agar	No bacterial growth after 21 days		
Mycoplasma	Direct culture and Hoechst DNA staining	None detected		
Identity	STR	Consistent with donor sample		
Viral Panel Testing	PCR	None detected for CMV, EBV, HBV, HIV1 and HPV		

EB differentiation is being replaced by transcriptomebased pluripotency analysis

ATCC iPSCs are monitored for pluripotency

Immunocytochemistry: Tra 1-60, Tra 1-81, SSEA-4 and Nanog

ATCC iPSCs are monitored for pluripotency

ATCC iPSCs are tested for their capacity to differentiate into the three germ layers

Transcriptome-based pluripotency: PluriTest

- Assesses pluripotency and differentiation based on a comparison of gene expression profiles from a large database of known pluripotent cell samples
 - Pluripotent stem cells (223 hESCs, 41 hiPSCs)
 - Differentiated cell types, developing and adult tissues (204 somatic cells)
- Pluripotency is based on empirically determined thresholds
 - Pluripotency Score: indication of a sample containing a pluripotent signature
 - Novelty Score: based on existing data from other well-characterized PSC lines

- ATCC iPSC lines
- Somatic cells used for reprogramming
- EBs collected at 2, 3 and 4 weeks
- BG01V hESC

Easy to use, all-in-one culture system

Feeder-Dependent		Feeder-Free	Conventional
Media	Pluripotent Stem Cell SFM XF (Serum Free, Xeno Free)	Pluripotent Stem Cell SFM XF/FF (Serum Free, Xeno Free)	DMEM:F12 ES Qualified FBS
Substrate	MEF/HFF Mitomycin C treated; γ-irradiated	Cell Basement Membrane Gel	MEF/HFF Mitomycin C treated; γ-irradiated
Passaging	Dissociation Reagent	Dissociation Reagent	Dissociation Reagent
Cryopreservation	Stem Cell Freezing Media	Stem Cell Freezing Media	Stem Cell Freezing Media
Supporting Reagent	ROCK inhibitor	ROCK inhibitor	ROCK inhibitor
Growth Factor	N/A	N/A	bFGF

No adaptation necessary, all reagents are formulated to work together!

ATCC iPSC cultured in different media system retain consistent differentiation capabilities

Germ Layer Target

ATCC iPSC quality standards

Characterization of Parkinson's iPSC lines

Human reference iPSC lines

ATCC Parkinson's iPSC lines

- Patient-specific iPSCs provide an opportunity to model human disease in culture – 'Disease-in-a-dish'
- Parkinson's Disease Second most common neurodegenerative disorder
- Donor information: 63 years old Caucasian male diagnosed with Parkinson's disease, asthma, and depression
- Exome sequencing identified multiple missense mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) gene: R50H, I1723V, M2397T

ATCC [®] No.	Designation	Reprogramming Method
ACS-1012™	ATCC-DYR0530	Retrovirus
ACS-1013™	ATCC-DYS0530	Sendai virus
ACS-1014™	ATCC-DYP0530	Episomal

Reprogramming methods do not affect differentiation potential

ATCC iPSC quality standards

Characterization of Parkinson's iPSC lines

Human reference iPSC lines

Reference iPSC collection

Coming Soon!

Derivation criteria

Somatic cell of origin	CD34+ cells	
Disease state	Clinically normal	
Reprogramming method	Sendai virus (Foot-print free)	
Gender	Male	
Gender	Female	
Age	Adult, 25-60	
	African American	
Ethnicity	Hispanic	
Ethnicity	Caucasian	
	Asian	
Somatic cell of origin	CD34+ cells	

- In-depth characterization
 - Differentiation potential

- Stability over long-term in vitro culture
- Whole exome sequencing

ATCC iPSC quality standards

Characterization of Parkinson's iPSC lines

Human reference iPSC lines

Mesenchymal stem cells

Mesenchymal stem cells, or MSCs, are multipotent stromal cells that can differentiate into a variety of cell types, including: osteoblasts (bone cells), chondrocytes (cartilage cells), and adipocytes (fat cells).

The cells could potentially be used to treat diseases by providing immunomodulation, anti-inflammatory actions, and cell replacement as well as delivering therapeutic agents.

Easy to use MSC Culture System from ATCC

Mesenchymal Stem Cells derived from various tissue sources

ATCC [®] No.	Name	Source	Age	Passage #
PCS-500-010	Umbilical Cord-Derived MSCs; Normal, Human	Umbilical cord matrix	Neonatal	2
PCS-500-011	Adipose-Derived MSCs; Normal, Human	Lipo-Aspirate	Adult	2
PCS-500-012	Bone Marrow-Derived MSCs; Normal, Human	Bone Marrow	Adult	2

- Optimized Mesenchymal Stem Cell Culture Medium to ensure:
 - Functional expression of MSC markers
 - Growth and proliferation
 - Multi-lineage differentiation capability
- Multi-lineage Differentiation Kit
 - Adipocyte Differentiation Toolkit
 - Chondrocyte Differentiation Toolkit
 - Osteocyte Differentiation Toolkit

Visit www.atcc.org for more information

Post-thaw recovery and growth curve of BM-MSCs

Flow analysis of a panel of MSC-specific CD markers recommended by ISCT (International Society for Cellular Therapy) in BM-MSCs after 3 or 6 passages of *in vitro* culture.

BM-MSCs exhibit consistent immunophenotype over extended culture

Immunocytochemistry analysis of MSC markers expression

Adipogenic, osteogenic, and chondrocyte differentiation of BM-MSCs

Adipocytes

Osteoblasts stained with Alizarin Red

ATCC

Adipocytes stained with Oil Red O

Chondrocytes stained with Alcian Blue