

Victoria Knight-Connoni, PhD

Head of Content and Product Development, ATCC

Agenda

1 The ATCC collection

2 In vitro derivatives and standards

3 Summary

The ATCC® Collection

ATCC® is a global leader in providing authenticated, high-quality biological resources and standards for industry, academia, and government.

- Founded in 1925, ATCC® is a private, nonprofit, global biological resource center and standards organization
- World's trusted, premier biological materials resource and standards development organization:
 - 4,000 cell lines
 - 70,000 microorganisms
 - Genomic & synthetic nucleic acids
 - Media/reagents
 - Reference genomes
 - Advanced cell models
- Worldwide cold chain reach in >150 countries via direct ship and network of 20 distributors

Mycology 1864 genera

Virology 200 genera

Authentication

ATCC[®]

ATCC® stocks provide reliable, authenticated, traceable material

Microbial Authentication

- Genotypic & proteotypic analyses
 - Whole-genome sequencing (ATCC® Genome Portal)
 - Marker sequencing (16S rRNA and ITS)
 - MALDI-TOF MS
- Phenotypic and functional analyses
 - Colony morphology
 - Biochemical profiling
 - Serotype
 - Antibiotic resistance
 - Virulence

Cell Biology Authentication

- Human Cell STR Profiling
- Mouse STR Profiling
- Mycoplasma testing

ATCC® Genome Portal

The only authenticated reference genome database for ATCC® microbes

The ATCC® Genome Portal (AGP) is a rapidly growing ISO 9001–compliant database of high-quality reference genomes from authenticated microbial strains in the ATCC® collection. Customers can easily access and download meticulously curated whole-genome assemblies for purchased strains and Supporting Members have full access to the AGP.

5,750

Available reference genomes

as of August 2025

- Download genome assemblies for ATCC® microbes.
- Search for nucleotide sequences or genes within published genomes.
- Search for genomes by taxonomic name, taxonomic level, isolation source, ATCC® catalog number, type strain status, and biosafety level.
- View genome assembly statistics and quality metrics.
- Identify the relatedness of published genomes by total genome alignment.

New genomes are released at the end of every quarter.

In Vitro Derivatives and Standards

Standards and Controls

Committed to providing trustworthy reference materials and standards to support reproducibility in the life sciences

Food Testing

Standards Development

In 2007, ATCC® became the first biological resource organization to become accredited by **American National Standards Institute (ANSI)** as a Standards Development Organization (SDO).

ATCC published the following voluntary consensus standards:

- Standardization of In Vitro Assays to Determine Anthrax Toxin Activities (ASN-0001)
- Authentication of Human Cell Lines: Standardization of Short Tandem Repeat (STR) Profiling (ASN-0002)
- Species-Level Identification of Animal Cells through Mitochondrial Cytochrome C Oxidase Subunit 1 (CO1) DNA Barcodes (ASN-0003)

Bioproduction Tools

Learn about our tools for

bioproduction

Bioproduction cell lines and microbes

- Protein production cell lines
- Enhanced virus production cell lines
- Antibiotic production microbes
- Organic Acid production bacteria
- Biofuel production microbes

Reference materials for testing for contaminants during bioproduction

- Host cell DNA
- Microbial certified reference materials
- MicroQuant™ by ATCC® (USP <51>
 <60>, <61>)
- Viral reference materials
 - Lentivirus
 - Human Adenovirus 5
 - Recombinant AAV2 and AAV8

MicroQuant™ by ATCC®

Innovation

Quantitative pellet created by an internally developed proprietary cryopreservation innovation

Value Add

Storage at 2°C to 8°C. Rehydrates rapidly and uniformly at room temperature

Intended Use

Microbial QC testing

Assays

Support for USP monographs:

- USP <51> Antimicrobial effectiveness testing
- USP <60> Tests for *Burkholderia cepacia* complex
- USP <61> Bioburden testing
- USP <62> Bioburden testing: tests for specific microorganisms
- USP <71> Sterility testing

Format

1 kit containing:

5 vials of cryopreserved pellets

5 vials of rehydration buffer

Learn more at www.atcc.org/microquant

Molecular Diagnostics Tools

SampleAcquisition &
Preparation

Early **Assay Development**

Assays & Instrument Integration

Verification & Validation

Operational Reliability
Assessment – **Controls**

Sensitivity (LOD, inclusivity) & **Specificity** (exclusivity, interference)

Molecular standards

Live cultures

Synthetics & Inactivated cultures

Each stage of the development pipeline requires different materials → complementary materials allows for rapid assay development

Reference Material	Benefit	Disadvantage
Live microbes	Sustainable source, maintains complexity of the intact microorganism, provides entire genome	Difficulty accessing materials, biosafety
Inactivated materials	Ability to access to pathogens in BSL 1 labs	Cells may no longer perform as live microbe
Genomic DNA/RNA	Ease of access, safe to use	May not mimic live microbe
Synthetic oligonucleotides	Easy to design and synthesize, allows access to non-culturable materials	May not resemble complexity of the whole genome
Learn more about our genomic and synthetic		

molecular standards

Case Study: Avian Influenza (H5N1) VR-3436SD™

- Avian influenza viruses (AIVs) are a growing global health threat
- We developed a synthetic avian influenza (H5N1) for use as a validation control in surveillance assays
- AB
- Two transcript design covering 5 genome segments:
 - Transcript A contains HA and NP
 - Transcript B contains M1/M2, NA, and NEP/NS
- An international consortium of academic and industrial partners used our product to validate an qRT-PCR assay for surveillance of birds from Asia

Detection of Influenza in bird guano by site

Case Study: Wastewater Monitoring of STIs

- Chlamydia, Trachoma, and Syphilis are common sexually transmitted bacterial infections (STIs)
- The infections are mostly asymptomatic, which increases the risk of transmission
- Wastewater monitoring can be used to monitor community burden → increase targeted testing
- We developed a synthetic *Treponema pallidium* product (BAA-2642SD™) that was used to validate a
 ddPCR assay for wastewater screening

Tracking Chlamydia and Syphilis in the Detroit Metro Area by Molecular Analysis of Environmental Samples

Liang Zhao, Heidy Peidro Guzman, and Irene Xagoraraki*

Metagenomics Standards

ATCC[®]

Whole cell and genomic mock microbial communities

Plant Pathogens as Reference Materials

Challenge:

 Crop losses due to fungal pathogens are > \$200 billion annually and they are responsible for 85% of all plant diseases.

ATCC's ® Solution:

- ATCC® has 1,400 species of fungal and oomycete plant pathogens encompassing 340 genera.
- We have 109 APHIS-regulated fungal pathogens from 16 major US crops.
- Many of these pathogens are reference strains that could be use as plant pathogen standards.

Read our blog post:
"Precision in Plant Health –
ATCC's Role in Advancing Plant
Pathogen Standards"

Summary

We offer a range of products to accelerate your R&D needs

- ATCC® is a long-time **trusted partner** for high-quality authenticated biomaterials, standards, and services in the life sciences.
 - Diverse collection of microbial and cell cultures
 - ATCC® continues to support the development and implementation of diagnostics and surveillance tests with reliable authenticated reference materials
 - Genomic DNA standards are ready-to-use reference materials eliminating additional costs and time required for cell line expansion, DNA extraction, and quantitation
 - Synthetic standards provide controls for organisms that are difficult to culture or extract
 - Metagenomics standards comprising whole cells or quantitative nucleic acids from organisms in even and staggered mixtures
- History of **partnerships** with **industry**, **government**, **and academia** to improve **human health**, agriculture, veterinary, environment, etc.
- What do YOU need?
 - ATCC® exists as a resource for the scientific community

Questions

vknight-connoni@atcc.org

Appendix

Molecular Analytical Reference Materials

Genomic Analytical Reference Materials

ATCC® has a portfolio of 270+ products from:

- Blood-borne disease
- Gastro-intestinal disease
- Respiratory disease
- Sexually transmitted disease
- Vector-borne disease pathogens

Authentication

- Identity: Amplicon sequencing
- Integrity: High-molecular-weight NA by gel electrophoresis

Synthetic Molecular Standards

ATCC® has a portfolio of 75+ products from:

- Gastrointestinal disease
- Respiratory disease
- Sexually-transmitted disease
- Vector-borne disease pathogens
- Manufactured under ISO13485 guidance

Authentication

- Identity: NGS to verify synthetic sequence
- Function: qPCR 3.32 cycles between Cq threshold

Learn more about our genomic and synthetic molecular standards

ATCC® Microbiome Standards Portfolio

Preparation	ATCC® Catalog No.	Number of Organisms	Composition	Complexity	Utility	
	MSA-1000™	10	Even	Medium		
Genomic	MSA-1001™	10	Staggered	Medium	Standards for	
DNA	MSA-1002™	20	Even	High	assay development	
	MSA-1003™	20	Staggered	High	and	
Whole cell	MSA-2003™	10	Even	Medium	optimization	
WITOTE CET	MSA-2002™	20	Even	High		
Genomic DNA	MSA-4000™	11	Staggered	Medium	NGS-based pathogen detection	
	MSA-3000™	6	Even	Low		
Genomic DNA	MSA-3001™	10	Even	Medium	Environmental studies	
	MSA-3002™	10	Staggered	Medium		

ATCC® Site-specific NGS Standards

Standard	Preparation	ATCC® Catalog No.	Number of Organisms	Importance		
Oral	Whole cell	MSA-2004™	6	Mock microbial communities		
Oral	Genomic DNA	MSA-1004™	6			
Skin	Whole cell	MSA-2005™	6	representing the oral, skin, gut, and vaginal microbiomes		
SKIII	Genomic DNA	MSA-1005™	0	Comprises normal and atypical flora		
	Whole cell	MSA-2006™		 Anaerobic and aerobic microbial 		
Gut	Genomic DNA	MSA-1006™	12	 A combination of Gram-positive and 		
Vaginal	Whole cell	MSA-2007™	6	Gram-negative bacterial cultures • Even composition		
Vaginal	Genomic DNA	MSA-1007™	6	21011001110011		

ATCC® Spike-in and Mycobiome Standards

Standard	Preparation	ATCC® Catalog No.	Number of Organisms	Application
	Whole cell	MSA-2014™		Microbiome measurements and data normalization
Spike-in	Genomic	MSA-1014™	3	 16S rRNA and shotgun assay verification, validation, and quality control

Standard	Preparation	ATCC® Catalog No.	Number of Organisms	Application
Mycobiome	Whole cell	MSA-2010™	10	Fungal mock community standards for assay development,
	Genomic	MSA-1010™	10	10

Reference Materials for Viral Metagenomics

Composition of Virome Analytical Refence Materials

Human herpesvirus 5 strain AD169 (ATCC® VR-538™)

Human mastadenovirus strain F (ATCC® VR-931™)

Influenza B virus strain B/Florida/4/2006 (ATCC[®] VR-1804™)

Zika virus strain MR 766 (ATCC® VR-1838™)

Reovirus 3 strain Dearing (ATCC[®] VR-824[™])

Human respiratory syncytial virus strain A2 (ATCC® VR-1540™)

Intended Use	Content	ATCC® Catalog No.	Number of Organisms	Specification (ddPCR)	Applications
Virome	Virus Mix	MSA-2008™	6	2 × 10 ³ genome copies/µL per virus	Assay development, optimization,
Analysis	sis Nucleic Acid Mix MSA-1008™ 6	2 × 10 ⁴ genome copies/µL per virus	 verification, and validation. Reproducibility assessment (routine QC). 		

Influenza Synthetic RNA Products

ATCC®

Quantitative BSL-1 analytical reference materials

ATCC® Product	Influenza strain used for design (subtype/lineage)
VR-3384SD™	B/Malaysia/2506/2004 (Victoria lineage)
VR-3385SD™	B/Brisbane/60/2008 (Victoria lineage)
VR-3386SD™	A/Brisbane/59/07 (H1N1)
VR-3387SD™	A/Hiroshima/52/2005 (H3N2)
VR-3388SD™	A/Netherlands/2629/2009 (H1N1pdm2009)
VR-3436SD™	A/white-tailed eagle/Japan/OU-1/2022 (H5N1)
VR-3437SD™	A/Shanghai/4664T/2013 (H7N9)
VR-3438SD™	A/chicken/Wenzhou/334b/2013 (H7N7)
VR-3439SD™	A/goose/Guangdong/GS018/2015 (H5N6)
VR-3440SD™	A/ostrich/Yunnan/438/2014 (H9N2)

ATCC has Oncology Standards for Human Cell Lines

ATCC® quantified human genomic DNAs

Cell lines from relevant diseases

Quantified biomarker

Mut. allelic freq.

Absolute gene copies

CNV

CRM cell lines and DNAs

Stated level of confidence for traceability and values of uncertainty

ATCC® No.	Cell line name	Amino acid change	DNA change	
CRM-TIB-161™	HuT 78	WT	WT	
CRM-CCL-119™	CCRF-CEM	p.G12D	c.35G>A	
CRM-CCL-185™	A549	p.G12S	c.34G>A	
CRM-CRL-1420 ™	MIA PaCa-2	p.G12C	c.34G>T	
CRM-HTB-174™	NCI-H441	p.G12V	c.35G>A	
CRM-CRL-3211™	PSN1	p.G12R	c.34G>C	
CRM-CCL-155™	RPMI 8226	p.G12A	c.35G>C	
CRM-HTB-26™	MDA-MB-231	p.G13D	c.38G>A	

BRAF, EGFR, ERBB2, KRAS, NRAS, MET, MYC, PIK3CA, pTEN, TP53

Find out more

ATCC® No.	Purified from Cell Line	Disease	Quantified Oncology Bio-marker	Report mutation allelic frequency *	Report absolute gene copies / ng DNA **	Report relative gene copy number **
CRL-1648DQ™	CA46	Burkitt's lymphoma	TP53 R248Q	√	√	√
HTB-30DQ™	SK-BR-3	Breast adenocarcinoma	TP53 p.R175H		$\sqrt{}$	√
HTB-122DQ™	BT-549	Breast ductal carcinoma	TP53 p.R249S	√	√	√
HTB-131DQ™	MDA-MB-453	Breast carcinoma	PIK3CA p.H1047R	√	√	√
CCL-225DQ™	HCT-15	Colon adenocarcinoma	KRAS p.G13D	√	√	√
CCL-227DQ™	SW620	Colon adenocarcinoma	KRAS p.G12V		$\sqrt{}$	√
CCL-227DQ	300020	Colon adenocarcinoma	TP53 p.R273H	√		√
CCL-231DQ™	SW48	Colon adenocarcinoma	EGFR p.G719S	√	$\sqrt{}$	
CL-187DQ™	LS180	Colon adenocarcinoma	KRAS p.G12D	√	$\sqrt{}$	√
CRL-2158DQ™	LS1034	Colon carcinoma	TP53 p.G245S	√	$\sqrt{}$	V
CRL-5973DQ™	SNU-5	Stomach undifferentiated adenocarcinoma	MET amplification	-	√	
CRL-5974DQ™	SNU-16	Stomach undifferentiated adenocarcinoma	MYC amplification	-	√	
HTB-111DQ™	AN3 CA	Endometrium adenocarcinoma	PTEN p.R130fs	√	√	
CRL-2868DQ™	HCC827	Lung adenocarcinoma	EGFR pELREA746del EGFR amplification	√ -	√	√
CRL-5908DQ™	NCI-H1975	Lung non-small cell carcinoma	EGFR p.T790M; EGFR p.L858R	√	√	√
CRL-2177DQ™	SW 1271	Lung small cell carcinoma	NRAS p.Q61R	√	√	√
CRL-5928DQ™	NCI-H2170	Lung squamous cell carcinoma	HER 2 amplification	-	√	√
CRL-7898DQ™	A101D	Skin malignant melanoma	BRAF p.V600E	√	√	

ATCC has Tumor Normal Matched Cell Line Pairs

