Luciferase reporter cell lines with endogenous T cell or myeloid checkpoint expression enable monitoring of multi-directional crosstalk between immune and cancer cells in tumor microenvironment

Hyeyoun Chang, PhD; Alicia C. Walker, BS; John G. Foulke, MS; Luping Chen, BS; Fang Tian, PhD*; Zhizhan Gu, MD, PhD* ATCC[®], Manassas, VA 20110

Abstract

Background: Despite the huge success of immunotherapies targeting T cells, a substantial proportion of patients experience resistance or relapse due to the immunosuppressive nature of tumor microenvironment. Increasing number of studies have indicated that other immune cells, such as B cells and myeloid cells, also play a critical role in determining the overall efficacy of cancer immunotherapeutic. However, there is a definite shortage of broadly accessible immunological models effectively representing the complex multi-directional interaction amongst cancer cells, adaptive immune cells, and innate immune cells.

Methods: To address this need, we selected six human cell lines of T cell, B cell, or myeloid cell origin with high endogenous expression of T cell checkpoint (PD-1, TIGIT, and/or GITR) or myeloid checkpoint (SIRPα, Siglec-10, LILRB1, and/or B7-1) and engineered them to express luciferase reporter protein in response to nuclear factor of activated T cells gene (NFAT) or nuclear factor kappa B (NF-κB) signaling activation, respectively. To assess the robustness of luciferase expression, the established NFAT luciferase cell lines were activated with phorbol 12-myristate 13-acetate (PMA) and ionomycin, and NF-kB luciferase cell lines were stimulated with tumor necrosis factor alpha (TNF- α) or T cell-conditioned media. One of the NF- κ B cell lines of B cell origin with high basal luciferase expression (BDCM-NFκB-Luc2) was treated with a NF-κB signaling inhibitor to observe the change in luciferase expression. The reporter cells were then applied in various co-culture conditions with primary immune cells and/or cancer cells to evaluate the immune crosstalk among different cell types. All treatments and co-cultures were followed by a luciferase assay for convenient quantification of luciferase expression.

Results: The data showed that PMA and ionomycin activation increased luminescence intensity by 20-1,000 fold from NFAT reporter cell lines. TNF-α stimulation also increased luminescence intensity by 20-800 fold in a dose-dependent manner from all NF-κB reporter cell lines but from BDCM-NFκB-Luc2. Incubation with T cell-conditioned media resulted in 10-170-fold increase in luminescence intensity from all NF-κB reporter cell lines except for BDCM-NFκB-Luc2. Treatment of BDCM-NFκB-Luc2 cells with a NF-κB signaling inhibitor yielded 20-fold decrease in luminescence intensity. Further co-culture of the reporter cell lines with various immune cells and/or cancer cells significantly increased luminescence signal intensity by up to 200 fold.

Conclusions: These novel luciferase reporter cell lines with endogenous T cell or myeloid checkpoint expression offer an excellent ex vivo model for studying the complex interactions among cancer cells, innate immune cells, and adaptive immune cells in the tumor microenvironment.

Background

Immune checkpoint molecule expression profiling of T cell lines and myeloid cell lines

			HLA typing		Inhibitory checkpoint molecules						Co-stimulatory checkpoint molecules							Immune cell marker		
Cell Lines	ATC	C® catalog #	HLA class I	HLA class II	PD-1	CTLA4	LAG-3	TIM-3	втга	VISTA	тівіт	4-1BB	ICOS	CD30	CD28	OX40	GITR	CD226	CD4	CD8
Jurkat E6-1	1	ΓIB-152™	+	-	45	0	71	43	202	2406	17	0	77	3463	0	0	156	11054	275	14
TALL-104	CF	RL-11386™	+	-	75	2	159	1090	301	1051	0	30	501	36	14507	319	243	99	58	8535
MOLT-3	C	RL-1552™	+	-	230	71	107	42	191	377	32	0	929	672	4353	273	303	149	143	617
НН	С	RL-2105™	+	+	243	24	1046	749	606	3878	1995	42	68	214676	512	1368	610	26814	29347	121
HuT 78	1	TIB-161™	+	+	231	20	416	267	1114	2884	88	240	1014	13216	431	3661	9674	901	7852	397
SUP-T1	С	RL-1942™	+	-	2076	219	81	20	487	1339	18	0	54	1	15430	876	32	656	29250	8112
HM2	ŀ	IB-8587™	+	-	361	46	120	0	464	4075	221	0	518	531	56	854	322	736	229	541
MJ [G11]	C	RL-8294™	+	+	272	91	348	281	2740	1607	4727	501	9072	51092	0	15528	37952	2987	21023	101
CCRF-CEM	(CCL-119™	+	-	108	13	81	111	222	119	53	7	347	567	5884	163	479	342	9641	6306
Primary CD8+ T ce	lls PCS	S-800-017™	+	-	812	98	274	10745	623	1378	88	57	1567	71	607	119	720	4268	0	22324
rimary CD4+ T ce	lis PC	S-800-016 [™]	+	-	921	106	35	1381	/56	1029	32	43	2252	862	6477	380	1040	5041	/916	21
3																				
3																				
3	Cell	ATCC®								CD274	PD	OCD1	CD8	о н.	AVCR2					
3	Cell Lines	ATCC [®] catalog	# E>	p	Disea	ase	(Cell Typ	e	CD274 (PD-L1)	PD (P)CD1 2D1)	CD8 (B7-1	0 H.	AVCR2 TIM3)	SIR	PA	LILRB1	L SIG	GLEC1
3	Cell Lines	ATCC® catalog	# E>	p	Disea cute mo	ase nocyti	(;	Cell Typ	e	CD274 (PD-L1) 0.08	PD (P	0CD1 2D1) 0	CD8 (B7-1 0	0 H. L) (AVCR2 TIM3) 0.35	SIR 4.	49	LILRB1 1.32	1 SIG	GLEC1 1.47
3	Cell Lines THP1	ATCC® catalog TIB-202 ¹	# E> ™ R R	p 1 Ac 2	Disea cute mo leuke	ase nocyti mia	(7 m	C ell Typ nonocyt	e te	CD274 (PD-L1) 0.08 0.27	PD (P	0 0 0	CD8 (B7-1 0 0	0 H. L) (AVCR2 TIM3) 0.35 0.25	SIR 4. 4.	49 47	LILRB1 1.32 1.22		GLEC1 1.47 1.52
Атсс	Cell Lines THP1	ATCC® catalog TIB-202	# E> M R R M R	p 1 Ac 2	Disea cute mo leuke Acu	ase nocyti mia te	(² n	Cell Typ	e te	CD274 (PD-L1) 0.08 0.27 0.27	PD (P	0CD1 2D1) 0 0 0	CD8 (B7-1 0 0	D H. L) (AVCR2 TIM3) 0.35 0.25 1.94	SIR 4. 4.	PA 49 47 72	LILRB1 1.32 1.22 2.31		5LEC1 1.47 1.52 4.1
ATCC bulkRNAseq	Cell Lines THP1 KG1	ATCC® catalog TIB-202 CCL-246	# E> M R R M R R R	p 1 Ac 2 1 2 1	Disea cute mo leuke Acu myelogo	ase nocyti mia te enous	r n ma	Cell Typ nonocyt acropha	e te	CD274 (PD-L1) 0.08 0.27 0.27 0.34	PD (P	0 0 0 0 0 0	CD8 (B7-1 0 0 0 0	D H. L) (AVCR2 TIM3) 0.35 0.25 1.94 2.2	SIR 4. 2. 2.	PA 49 47 72 57	LILRB1 1.32 1.22 2.31 2.35		GLEC1 1.47 1.52 4.1 3.92
ATCC bulkRNAseq by Psomagen®	Cell Lines THP1 KG1	ATCC® catalog TIB-202 ¹ CCL-246	# EX M R R R R R R R	p 1 Ac 2 1 2 1	Disea cute mo leuke Acu myelogo Histioo	ase nocyti mia te enous cytic	n ma	Cell Typ nonocyt acropha	e te	CD274 (PD-L1) 0.08 0.27 0.27 0.34 0.1	PD (P	0 CD1 0 D1) 0 0 0 0 0 0	CD8 (B7-1 0 0 0 0 0	D H. L) (AVCR2 TIM3) 0.35 0.25 1.94 2.2 0.44	SIR 4. 2. 2. 6.	PA 49 47 72 6 57 6	LILRB1 1.32 1.22 2.31 2.35 1.97		5LEC1 1.47 1.52 4.1 3.92 2.81
ATCC bulkRNAseq by Psomagen [®] .og2(FPKM+1)	Cell Lines THP1 KG1 U937	ATCC® catalog TIB-202 ¹ CCL-246 CRL-1593.	# E>	p 1 Ac 2 1 2 1 2	Disea cute mo leuke Acu myeloge Histioe Lymph	ase nocyti mia te enous cytic oma	r ma ma	Cell Typ nonocyt acropha nonocyt	e te	CD274 (PD-L1) 0.08 0.27 0.27 0.34 0.1	PD (P	0CD1 0D1) 0 0 0 0 0 0 0 0	CD8((B7-1) 0 0 0 0 0 0	D H. L) (AVCR2 TIM3) 0.35 0.25 1.94 2.2 0.44 0.5	SIR 4. 2. 2. 6. 6.	PA 49 47 72 57 02 11	LILRB1 1.32 1.22 2.31 2.35 1.97 1.96		5LEC1 1.47 1.52 4.1 3.92 2.81 2.98
ATCC bulkRNAseq by Psomagen® .og2(FPKM+1)	Cell Lines THP1 KG1 U937	ATCC® catalog TIB-202 ¹ CCL-246 CRL-1593.	# E) M R R M R R 2 TM R R R	p 1 Ac 2 1 2 1 1 2 1 3 3 1 B	Disea cute mo leuke Acu myeloge Histioe Lymph rain mie	ase nocyti mia te enous cytic oma croglia	n ma	Cell Typ nonocyt acropha nonocyt	e te – age – te –	CD274 (PD-L1) 0.08 0.27 0.27 0.34 0.1 0.07 3.56	PD (P	CD1 D1) 0 0 0 0 0 0 0 0 0 0	CD8 (B7-1 0 0 0 0 0 0 0 0 0 0	D H. L) ((AVCR2 TIM3) 0.35 0.25 1.94 2.2 0.44 0.5 0	SIR 4. 2. 2. 6. 6. 4.	PA 49 47 72 57 02 11 05 55	LILRB2 1.32 1.22 2.31 2.35 1.97 1.96 0		GLEC1 1.47 1.52 4.1 3.92 2.81 2.98 0
ATCC bulkRNAseq y Psomagen® og2(FPKM+1)	Cell Lines THP1 KG1 U937 HMC3	ATCC® catalog TIB-202 ¹ CCL-246 CRL-1593. CRL-3304	# E> M R R R 2 TM R R R R R R R	p 1 Ac 2 1 1 1 2 1 1 B 2	Disea cute mo leuke Acu myeloga Histioa Lymph rain mia cel	ase nocyti mia te enous cytic oma croglial	n ma n mid	Cell Typ nonocyt acropha nonocyt croglial	e te age te cell	CD274 (PD-L1) 0.08 0.27 0.27 0.34 0.1 0.07 3.56 3.63	PD (P	PCD1 PD1) 0 0 0 0 0 0 0 0 0 0 0 0 0	CD8 (B7-1 0 0 0 0 0 0 0 0 0 0 0 0	D H. L) (AVCR2 TIM3) 0.35 0.25 1.94 2.2 0.44 0.5 0.5 0 0	SIR 4. 2. 2. 6. 6. 4. 4.	PA 49 47 72 57 02 11 05 03	LILRB: 1.32 1.22 2.31 2.35 1.97 1.96 0 0		GLEC1 1.47 1.52 4.1 3.92 2.81 2.98 0 0
ATCC bulkRNAseq by Psomagen® .og2(FPKM+1)	Cell Lines THP1 KG1 U937 HMC3	ATCC® catalog TIB-202 ¹ CCL-246 CRL-1593. CRL-3304	# E> M R R R R R R R R R R R R R R R	p 1 Ac 2 1 2 1 2 1 3 4 5 1 8 2	Disea cute mo leuke Acu myeloge Histioe Lymph rain mic cel	ase nocyti mia te enous cytic oma croglial	r ma ma mic	Cell Typ nonocyt acropha nonocyt	e	CD274 (PD-L1) 0.08 0.27 0.27 0.34 0.1 0.07 3.56 3.63	PD (P	DCD1 D1) 0 0 0 0 0 0 0 0 0 0 0	CD8((B7-1) 0 0 0 0 0 0 0 0 0 0	D H. L) (AVCR2 TIM3) 0.35 0.25 1.94 2.2 0.44 0.5 0 0	SIR 4. 2. 2. 6. 6. 4. 4.	PA 49 47 57 57 02 11 05 03 03	LILRB: 1.32 1.22 2.31 2.35 1.97 1.96 0 0		5LEC1 1.47 1.52 4.1 3.92 2.81 2.98 0 0
ATCC bulkRNAseq by Psomagen® .og2(FPKM+1)	Cell Lines THP1 KG1 U937 HMC3	ATCC® catalog TIB-202 CCL-246 CRL-1593. CRL-3304	# E) M R R R 2 TM R R R R R R R	p 1 Ac 2 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1	Disea cute mo leuke Acu myeloge Histioo Lymph rain mic cel	ase nocyti mia te enous cytic oma croglial	n ma mic	Cell Typ nonocyt acropha nonocyt	e te age te cell	CD274 (PD-L1) 0.08 0.27 0.27 0.34 0.1 0.07 3.56 3.63	PD (P	CD1 D1) 0 0 0 0 0 0 0 0 0 0 0 0 0	CD8 (B7-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 H, L) ((С	AVCR2 TIM3) 0.35 0.25 1.94 2.2 0.44 0.5 0 0 0	SIR 4. 4. 2. 2. 6. 6. 4. 4.	PA 49 47 72 57 02 11 05 03 03	LILRB: 1.32 1.22 2.31 2.35 1.97 1.96 0 0		GLEC1 1.47 1.52 4.1 3.92 2.81 2.98 0 0
ATCC bulkRNAseq y Psomagen® .og2(FPKM+1)	Cell Lines THP1 KG1 U937 HMC3 Cell Lines	ATCC® catalog TIB-202 ¹ CCL-246 CRL-1593. CRL-3304	# E> M R R R R R R R R R R R R R R R R R R R	p 1 Ac 2 1 2 1 1 2 1 1 2 1 3 p p p p p p p p	Disea cute mo leuke Acu myelogo Histioo Lymph rain mic cel	ase nocyti mia te enous cytic oma croglial l	ma ma	Cell Typ nonocyf acropha nonocyf croglial Cell Typ	e	CD274 (PD-L1) 0.08 0.27 0.34 0.1 0.07 3.56 3.63 3.63		PCD1 PD1) 0 0 0 0 0 0 0 0 0 0 0 0 0	CD8 (B7-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D H, L) (0 H L) (AVCR2 TIM3) 0.35 0.25 1.94 2.2 0.44 0.5 0 0 0 AVCR2 TIM3)	SIR 4. 2. 2. 6. 6. 4. 4. 2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	PA 49 47 57 02 11 05 03 03 8 PA	LILRB: 1.32 1.22 2.31 2.35 1.97 1.96 0 0 0 LILRB:		GLEC1 1.47 1.52 4.1 3.92 2.81 2.98 0 0 0
ATCC bulkRNAseq y Psomagen® og2(FPKM+1)	Cell Lines THP1 KG1 U937 HMC3 Cell Lines THP1	ATCC® catalog TIB-202 ¹ CCL-246 CRL-1593. CRL-3304 ATCC® catalog TIB-202 ¹	# E) M R R R 2 TM R R R R R R R	p 1 Acc 2 1 2 1 1 2 1 B 2	Disea cute mo leuke Acu myeloge Histioo Lymph rain mic cel Disea cute mo leuke	ase nocytic enous cytic oma croglial l nocyti mia	r r ma mic r	Cell Typ nonocyt acropha nonocyt croglial	e	CD274 (PD-L1) 0.08 0.27 0.27 0.34 0.1 0.07 3.56 3.63 CD274 (PD-L1) 0.33	PD (P	CD1 D1) 0 0 0 0 0 0 0 0 0 0 0 0 0	CD8 (B7-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 H, L) ((AVCR2 TIM3) 0.35 0.25 1.94 2.2 0.44 0.5 0 0 0 AVCR2 TIM3) 0.45	SIR 4. 2. 2. 6. 6. 4. 4. 2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	PA 49 47 57 02 11 05 03 8PA 72	LILRB: 1.32 1.22 2.31 2.35 1.97 1.96 0 0 0 0 1.68		GLEC1 1.47 1.52 4.1 3.92 2.81 2.98 0 0 0 GLEC1 1.99
ATCC bulkRNAseq by Psomagen® .og2(FPKM+1)	Cell Lines THP1 KG1 U937 HMC3 Cell Lines THP1 KG1	ATCC® catalog TIB-202 CCL-246 CRL-1593. CRL-3304 ATCC® catalog TIB-202 CCL-246	# E) M R R R R R R R R R R R R R R	p 1 Acc 2 1 2 1 1 2 1 B 2 I 1 B 2 I 1 Acc I Acc	Disea cute mo leuke Acu myeloge Histioe Lymph rain mic cel Disea cute mo leuke Acu myeloge	ase nocytic enous cytic oma croglial l nocyti mia te enous	r n ma mic c n	Cell Typ nonocyt acropha nonocyt croglial Cell Typ nonocyt acropha	e	CD274 (PD-L1) 0.08 0.27 0.27 0.34 0.1 0.07 3.56 3.63 CD274 (PD-L1) 0.33	PD (P 	CD1 D1) 0 0 0 0 0 0 0 0 0 0 0 0 0	CD8 (B7-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 H, L) ((AVCR2 TIM3) 0.35 0.25 1.94 2.2 0.44 0.5 0 0 0 AVCR2 TIM3) 0.45 2.41	SIR 4. 4. 2. 2. 6. 6. 4. 4. 4. 2. 5. 1. 4. 4. 2. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	PA 49 47 57 02 11 05 03 8PA 72 44	LILRB2 1.32 1.22 2.31 2.35 1.97 1.96 0 0 0 0 1.96 0 1.68 1.68		GLEC1 1.47 1.52 4.1 3.92 2.81 2.98 0 0 0 GLEC1 1.99 4.43
ATCC bulkRNAseq by Psomagen® .og2(FPKM+1) CCLE Expression 22Q2 Public Log2(TPM+1)	Cell Lines THP1 KG1 U937 HMC3 Cell Lines THP1 KG1	ATCC® catalog TIB-202 CCL-246 CRL-1593. CRL-3304 ATCC® catalog TIB-202 CCL-246 CRL-1593.	# E) M R R R R R R R R R R R R R R	p 1 Acc 2 1 2 1 1 2 1 B 2	Disea cute mo leuke Acu myeloge Histioe Lymph rain mic cel Disea cute mo leuke Acu myeloge Histioe	ase nocytic enous cytic oma croglial l nocyti mia te enous cytic oma	r n ma mic c n ma	Cell Typ nonocyt acropha nonocyt croglial <u>Cell Typ</u> nonocyt acropha	e	CD274 (PD-L1) 0.08 0.27 0.27 0.34 0.1 3.56 3.63 CD274 (PD-L1) 0.33 0.83	PD (P) (P) (P) (P (P) (P (P) (P) (CD1 D1) 0 0 0 0 0 0 0 0 0 0 0 0 0	CD8 (B7-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D H, L) ((AVCR2 TIM3) 0.35 0.25 1.94 2.2 0.44 0.5 0 0 0 4 VCR2 TIM3) 0.45 2.41 1.88	SIR 4. 4. 2. 2. 6. 6. 4. 4. 4. 2. 5. 10 4. 4. 4. 5. 10 5. 5. 5. 10 5 5 1 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5	PA 49 47 57 02 11 05 03 72 44 07	LILRB: 1.32 1.22 2.31 2.35 1.97 1.96 0 0 0 0 1.96 1.68 3.5 2.11		GLEC1 1.47 1.52 4.1 3.92 2.81 2.98 0 0 0 GLEC1 1.99 4.43 2.81

Figure 1: Heat maps based on protein profiling data of selected T cell lines and RNA-seq profiling data of selected myeloid cell lines for immune checkpoint molecule expression. (A) Immune checkpoint molecule expression levels in T cell lines were profiled by flow cytometry. Table values represent median fluorescence intensity (MFI) of sample subtracted by isotype control MFI. Each column was color-coded separately to avoid cross comparison. (B) Immune checkpoint gene expression levels in myeloid cell lines were profiled by RNA sequencing (Psomagen®) and the results were compared with CCLE (Cancer Cell Line Encyclopedia, Broad Institute) RNA-seq expression data. (C) Mechanism of action of the NFkB-Luc2 myeloid cell lines for myeloid checkpoint studies. Created with BioRender.com.

10801 University Boulevard, Manassas, Virginia 20110-2209

ATCC[®] © 2024 American Type Culture Collection. The ATCC trademark and trade name, and any other trademarks owned by the American Type Culture Collection unless indicated otherwise. Psomagen is a registered trademark of Psomagen, Inc. Bright-Glo and Promega are trademarks or registered trademarks of Promega Corporation. SpectraMax and Molecular Devices are registered trademarks of Molecular Devices, LLC.

Results

Luciferase expression in myeloid reporter cells upon NF-kB signaling pathway activation

Figure 2: Activation of NF-κB signaling by TNF-α treatment induces luciferase expression in myeloid reporter cell lines. (A) U-937 NFκB-Luc2 cells with high endogenous SIRPα expression, (B) KG-1 NFκB-Luc2 cells with high endogenous siglec-10 expression, and (C) HMC3 NFκB-Luc2 cells with high endogenous PD-L1 and SIRPα expression were stimulated for 6 hours with varying concentrations (0.01-1,000 ng/ mL) of TNF-α. Luciferase expression was quantified by the Bright-Glo™ Luciferase Assay System (Promega[®]). Luminescence intensity was measured by SpectraMax[®] i3x (Molecular Devices[®]). N=3 in all experiments. *, P < 0.05.

Luciferase expression in myeloid reporter cells upon T cell-conditioned media stimulation

Luciferase expression in B reporter cells upon NF-kB signaling pathway inhibition

Phone: 800.638.6597

Figure 3: Activation of NF-kB signaling by T cell-conditioned media induces luciferase expression in myeloid reporter cell lines. (A) U-937 NFkB-Luc2 cells, (B) KG-1 NFkB-Luc2 cells, and (C) HMC3 NFkB-Luc2 cells were stimulated for 6 hours with non-activated or activated T cellconditioned media. The cells were administered with the conditioned media collected from nonactivated or activated human primary CD4+ helper T cells. The activated conditioned media were harvested 3 days post-activation of the T cells with anti-CD2/CD3/CD28 beads. Luciferase expression was quantified by Bright-Glo™ Luciferase Assay System (Promega[®]). Luminescence intensity was measured by SpectraMax[®] i3x (Molecular Devices[®]). N=3 in all experiments. *, P < 0.05.

Figure 4: Inhibition of the NF-kB signaling

pathway by Selinexor treatment results in a

decrease in luciferase expression in the B

reporter cell line. BDCM NFkB-Luc2 cells that

endogenously express high levels of checkpoint

molecules LILRB1 and B7-1 were incubated with

(A) various concentrations of Selinexor for 24

Email: sales@ATCC.org

hours or (B) 1 µM Selinexor for different lengths of time. Luciferase expression was quantified by Bright-Glo[™] Luciferase Assay System (Promega[®]). Luminescence intensity was measured by SpectraMax[®] i3x (Molecular Devices[®]). N=3 in all experiments. *P < 0.05.

Figure 5: Activation or inhibition of NF-KB signaling upon co-culture with primary CD4+ T cells or cancer cells results in a change in luciferase expression in myeloid reporter cell lines. (A) U-937 NFkB-Luc2 cells, (B) KG-1 NFkB-Luc2 cells, and (C) HMC3 NFkB-Luc2 cells were co-cultured with human primary CD4+ helper T cells for 6 hours. The ratios of myeloid reporter cells to CD4+ T cells were 1:0, 1:1, 1:2, 1:5, and 1:10. (D) HMC3 NFkB-Luc2 cells were co-cultured with the human glioblastoma cell line, U-87 MG, for 6 hours at a 1:1 ratio of myeloid reporter cells to glioblastoma cells. Luciferase expression was quantified by Bright-Glo™ Luciferase Assay System (Promega). Luminescence intensity was measured by SpectraMax[®] i3x (Molecular Devices). N=3 in all experiments. *P < 0.05.

Luciferase expression in T reporter cell lines upon NFAT signaling pathway activation

Conclusion

- responses triggered by relevant immune checkpoint inhibition

Key References

- 1989. PubMed: 2698191 PubMed: 31611651

Web: www.ATCC.org

Figure 6: Activation of the NFAT signaling pathway leads to an increase in luciferase expression in T reporter cell lines. (A) The SUP-T1 NFAT-Luc2 cell line with high endogenous expression of PD-1 and (B) MJ NFAT-Luc2 cell line with high endogenous expression of TIGIT and GITR were stimulated for 6 hours with 50 ng/mL phorbol 12myristate 13-acetate (PMA) and 10 ug/mL ionomycin. Luciferase expression was quantified by Bright-Glo™ Luciferase Assay System (Promega[®]). Luminescence intensity was measured by SpectraMax[®] i3x (Molecular Devices[®]). N=3 in all experiments. *, P < 0.05.

Based on RNA-seq profiling data for myeloid and B cell lines and protein profiling data for T cell lines for numerous immune checkpoint molecules, we developed the myeloid reporter cell lines U-937 NFκB-Luc2 (ATCC[®] CRL-1593.2-NFkB-LUC2[™]), KG-1 NFκB-Luc2 (ATCC[®] CCL-246-NFkB-LUC2™), and HMC3 NFκB-Luc2 (ATCC[®] CRL-3304-NFkB-LUC2™), which have high endogenous expression of SIPRα siglec-10, and PD-L1/SIRPα, respectively; the B reporter cell line BDCM NFκB-Luc2 (ATCC[®] CRL-2740-NFkB-LUC2™), which has high endogenous expression of LILRB1 and B7-1; and the T reporter cell lines SUP-T1 NFAT-Luc2 (ATCC CRL-1942-NFAT-LUC2) and MJ NFAT-Luc2 (ATCC[®] CRL-8294-NFAT-LUC2[™]), which have high endogenous expression of PD-1 and TIGIT/GITR, respectively.

• These immune reporter cell lines produce robust, sensitive, and reproducible luciferase expression upon NF-κB signaling activation in myeloid and B cells or NFAT signaling activation in T cells, allowing reliable quantification of immune cell-mediated pro-inflammatory

• While maintaining physiological relevance and stable expression of the immune checkpoint molecules owing to the endogenous expression, these immune reporter cell lines effectively eliminate the donor variability issue commonly experienced by using primary immune cell models, offering an excellent alternative to the conventional models.

• The co-culture experiments of the myeloid reporter cell lines with primary T cells or cancer cells reveal the potential of these novel immune reporter cell lines in studying more intricate multi-directional interactions among cancer cells, innate immune cells, and adaptive immune cells, which is crucial in understanding the complex immune contexture in tumor microenvironment.

• Brasier AR, Tate JE, Habener JF. Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. Biotechniques 7(10): 1116-22,

• Nakamura K, Smyth MJ. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol Immunol 17(1): 1-12, 2020.

• Nusinow DP, et al. Quantitative proteomics of the cancer cell line encyclopedia. Cell 180(2): 387-402.e316, 2020. PubMed: 31978347 Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18(5): 309-324, 2018. PubMed: 29379212 • Macian F. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 5(6): 472-84, 2005. PubMed: 15928679