

THE ESSENTIALS OF LIFE SCIENCE RESEARCH GLOBALLY DELIVERED TM

Protocol for RPTEC/TERT1-OCT2 Uptake of 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP⁺) or N,N,N-Trimethyl-2[(7-nitro-1,2,3benzoxadiazol-4-yl)amino] ethanaminium iodide(EAM-1)

There is an abundance of OCT2 transporter in kidney tissue. However, primary cells lose OCT2 expression after just a few days in culture. To facilitate hOCT2 *in vitro* toxicity studies we have generated RPTEC/TERT1- OCT2 (ATCC[®] CRL-4031-OCT2[™]) cell line by stably expressing hOCT2 into the RPTEC/TERT1 (ATCC[®] CRL-4031[™]) cell line.

Functionality of the RPTEC/TERT1- OCT2 was demonstrated by uptake of 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+) or N,N,N-Trimethyl-2[(7-nitro-1,2,3benzoxadiazol-4-yl)amino] ethanaminium iodide (EAM-1). ASP+ is fluorescent in the RED channel and EAM-1 is fluorescent in the GREEN channel; both are readably been taken up by the OCT2 transporter, after uptake, the cells can be visualized under a fluorescent microscope or lysed and read on a fluorescent plate reader.

Materials:

Material	Company	Catalogue Number		
RPTEC/TERT1-OCT2	ATCC	CRL-4031-OCT2		
RPTEC/TERT1	ATCC	CRL-4031		
Trypsin-EDTA for Primary	ATCC	PCS-999-003		
Cells				
HBSS	Corning	21-023-CV		
ASP ⁺	Thermo Fisher	D288		
EAM-1	Macrocyclics	D-100		
Black 96-well plates	Corning	354649		
M-Per lysis buffer	Thermo Fisher	78501		
RPTEC media				
Basal media, DMEM:F12	ATCC	30-2006		
Growth kit	ATCC	ACS-4007		

DRAFT May 30, 2017

Protocol:

A. Seeding cells

- 1. Make complete RPTEC media by adding 5 mL of component A and 8mL of component B to the basal DMEM:F12 media, mix well.
- Thaw both RPTEC/TERT1 and RPTEC/TERT1-OCT2 cells and seed at 1.5-2.0 cells/cm² in T75cm tissue culture flasks in RPTEC media (for RPTEC/TERT1-OCT2, need to add 0.3 µg/mL puromycin for long term culturing). Passage cells at least one time prior to seeding cells in 96-well plates for the uptake assay.
- 3. Trypsinize both RPTEC/TERT1 and RPTEC/TERT1-OCT2 cells and re-suspend each cell line at a concentration of 5x10⁵ cells/mL in RPTEC media without antibiotic.
- 4. Plate 200 µL of cells into each well of a 96-well collagen I coated plate ensuring that both cells have a minimum of three replicates each.
- 5. Incubate the cells for 24–36 hours at 37°C and 5% CO₂ incubator.

B. ASP⁺/EAM-1 uptake assay

- 1. Make sure the cells are more than 90% confluent before you start the assay.
- 2. Wash the cells two times with 200 μL warm (37°C) HBSS in the 96-well plate.
- 3. Incubate the 2nd wash at 37°C and 5% CO₂ for 10 minutes; it is important to remove all remaining wash liquid to the last drop using a pipet.
- 4. Add 100 μ L of 100 μ M of ASP+ or 5 μ M of EAM-1 in warm HBSS and incubate at 37°C and 5% CO₂ for 20 minutes.
- 5. Remove all remaining ASP+ or EAM-1 to the last drop by using pipet tips.
- 6. Wash 4 times with cold (4°C) HBSS.
- 7. (Optional) The last wash can remain on the cells for up to 10 minutes to visualize the cells in the Red (for ASP+) or GREEN (for EAM-1) channel.
- 8. Remove the wash to the last drop using pipet tips and add 100 μL of M-Per lysis buffer.
- 9. Incubate for 10 minutes at room temperature protected from light.
- 10. Read on a fluorescent plate reader at 525_{ex}/580-640_{em} (for ASP+) or 490_{ex}/510-580_{em} (for EMA-1).
- 11. Calculate the fluorence intensity ratio of ASP+ or EAM-1 over parental.

Uptake ratio= <u>RFU of (RPTEC/TERT1-OCT2-Blank)</u> RFU of (<u>RPTEC/TERT1</u>-Blank)

Asp+ concentration	0μΜ	0.5µM	2μΜ	5μΜ	10µM	25µM	75µM	150µM	300µM	500µM
uptake ratio	1.017543	1.523934	2.033221	2.989123	3.455444	4.540586	4.776906	4.883032	4.38785	4.050386

Fig. 1. RPTEC/TERT1-OCT2 ASP+ uptake assays: cells were seeded on 96 well plate, 24 hours later, different concentration of Asp+ were added in the HBSS buffer and incubate at 37°C for 20 minutes; uptake was stopped by washing the wells with ice-cold HBSS, after 4 wash of the HBSS, a 100 µL of lysate buffer was added to each well, fluorescence intensity is measured using the Promega GloMax®-Multi Detection System

EAM-1 concentration	0μΜ	0.5µM	1μΜ	2μΜ	3μΜ	5μΜ	10μΜ	25μΜ	50μΜ	100μΜ
uptake ratio	2.267334	21.56116	23.0057	22.65206	22.73024	28.13118	29.92067	23.72269	21.58114	21.21723

Fig. 2. RPTEC/TERT1-OCT2 EAM-1 uptake assays: cells were seeded on 96 well plate, 24 hours later, different concentration of EAM-1 were added in the HBSS buffer and incubate at 37°C for 20 minutes; uptake was stopped by washing the wells with ice-cold HBSS, after 4 wash of the HBSS, a 100 μ L of lysate buffer was added to each well, fluorescence intensity is measured using the Promega GloMax®-Multi Detection System