ATCC Medium: 2700 50X Heterotrophic Basal Salts Solution

Growth medium for BAA-BAA-1645 (Y005), BAA-1647 (T23) and BAA-1648 (BRGM2).

Complete Medium 50X heterotrophic basal salts (see below) Trace elements solution (see below) Yeast Extract

The medium should be at a final pH of 2.0 for BAA-1645 and BAA-1647 The medium should be at a final pH of 1.8 for BAA-1648

Adjust the pH of the medium to 2.0 with H_2SO_4 .

Distribute 5-6 ml of medium into screw cap test tubes. When working with larger volumes, dispense 49 ml of medium into 250 ml screw cap flasks. Autoclave at 121°C for 20 minutes.

20.00 ml

1.00 ml

0.20 g

980.00 ml

When the medium has cooled:

Distilled water

- o add 1mL ferrous sulfate (1M stock solution-see below)
- o add 0.5 ml (1M glycerol stock solution-see below)

Growth medium for BAA-1646 (WJB-3).

50X heterotrophic basal salts (see below)	20.00 ml
Trace elements solution (see below)	1.00 ml
Distilled water	980.00 ml

The medium should be at a final pH of 3.0 for BAA-1646.

Distribute 5-6 ml of medium into screw cap test tubes. When working with larger volumes, dispense 49 ml of medium into 250 ml screw cap flasks. Autoclave at 121°C for 20 minutes.

When the medium has cooled:

- o add 10 μl ferrous sulfate (1M stock solution-see below)
- ο add 50 µl fructose (1M stock solution-see below).

50X Basal Salt Solution:

Add 20.00 ml to each l	liter of complete medium
Na_2SO_4 10H ₂ O	7.50 g
$(NH_4)_2SO_4$	22.50 g
KC1	2.50 g
MgSO ₄ ·7H ₂ O	25.00 g
KH ₂ PO ₄	2.50 g
$Ca(NO_3)_2 H_2O$	0.70 g
Distilled water	1.0L

Autoclave @ 121°C

Stock solutions:

Ferrous Sulfate solution: 1M stock solution adjusted to pH 1.8 with H₂SO₄. Filter Sterilize.
Glycerol Solution: 1M stock solution of glycerol. Autoclave @ 121°C
Fructose Solution: 1M Fructose. Filter Sterilize

Trace elements solution (ATCC Mineral Solution (MD-TMS) may be substituted.)

Add 1ml to each liter of complete medium

$ZnSO_4 \cdot 7H_2O$	10.00 g
$CuSO_4 \cdot 5H_2O$	1.00 g
$MnSO_4 \cdot 4H_2O$	1.00 g
$CoSO_4 \cdot 7H_2O$	1.00 g
$Cr_2(SO_4)_3$ 15 H_2O	0.50 g
H ₃ BO ₃	0.60 g
$Na_2MoO_4 \cdot 2H_2O$	0.50 g
$NiSO_4 \cdot 6H_2O$	1.00 g
Na_2SeO_3 10 H_2O	1.00 g
$Na_2WO_4 \cdot 2H_2O$	0.10 g
NaVO ₃	0.10 g
Distilled Water	1.00L

Preparation: Adjust the pH of 800 ml of water to 2.0 using H_2SO_4 . Add the above salts in the order listed allowing each to dissolve before adding the next. Monitor the pH keeping it at 2.0. After the addition of the Vanadate (NaVO₃), increase the volume to 1 liter. Autoclave @ 121°C. Final pH 2.0

Note: Following autoclaving -the Vanadate will require up to several days to dissolve. If you do not have Sodium Vanadate, ATCC Mineral Solution (MD-TMS) may be substituted.