Tetrahymena furgasoni Nanney and McCoy (ATCC® 30006)

Organism: Tetrahymena furgasoni Nanney and McCoy  /  Depositor: AM Elliott

Permits and Restrictions

View Permits

Strain Designations GL (amicronucleate)
Application
electrophoretic characterization
Identification of Tetrahymena species using PCR/RFLP analysis of rDNA
isoenzymic characterization of three mating groups
Electrophoretic characterization of strains
Biosafety Level 1
Product Format test tube
Type Strain no
Comments
electrophoretic characterization
Identification of Tetrahymena species using PCR/RFLP analysis of rDNA
species description
isoenzymic characterization of three mating groups
Electrophoretic characterization of strains
Inter-strain variability of structural proteins
Medium ATCC® Medium 357: Tetrahymena medium
Growth Conditions
Temperature: 25.0°C
Duration: axenic
Cryopreservation
RM-9 Media for cryopreservation of Tetrahymena

Proteose Peptone (Difco 0120)                                     5.0 g

Tryptone                                                                              5.0 g

K2HPO4                                                                                                                        0.2 g

Glucose                                                                               1.0 g

Liver extract                                                                        0.1 g

Glass distilled water                                                         1.0 L

Dissolve components in glass distilled H2O and autoclave.

Dryl’s Salt Solution

0.1 M NaH2PO4 3H20                                                                              10.0 ml

0.1 M Na2HPO4 .  7H20                                                                              10.0 ml

0.1 M Sodium citrate . 2H20                                           15.0 ml

0.1 M CaCl2 2H20                                                          15.0 ml

Distilled water                                                               950.0 ml

Add the first 3 components to the distilled H2O and mix thoroughly.

Add the CaC12  solution and mix thoroughly.

(Adding the solutions in the order indicated will avoid the precipitation of Ca salts.)

1.  Transfer tetrahymena from usual growth medium to RM-9 medium and allow to grow to near peak density.

2.   Harvest cells from a culture by centrifugation at 300 x g for 2 min.          

3.   Adjust concentration of cells to 2 x 106/ml in fresh

      medium.

4.   While cells are centrifuging, prepare a 22% (v/v) sterile

solution of sterile DMSO in fresh medium.

a) Add 2.2 ml of DMSO to an ice cold 20 x 150 mm screw-capped test tube;

b) Place the tube on ice and allow the DMSO to solidify (~5 min) and then add 7.8 ml of ice cold medium;

c) Invert several times to dissolve the DMSO;

d) Allow to warm to room temperature.

5.   Add a volume of the DMSO solution equal to the cell

      suspension volume but add in 3 equal aliquots at 2 min

      intervals. Thus, the final concentration of the preparation

      will equal 11% (v/v) DMSO and 106 cells /ml.

6.   Dispense in 0.5 ml aliquots into 1.0 - 2.0 ml sterile plastic

      screw-capped cryules (special plastic vials for       cryopreservation).

7.   Place the ampules in a controlled rate freezing unit. The

cooling cycle should be initiated no less than 15 min and no longer than 60 min after the addition of the DMSO to the cell preparation. From room temperature cool at -1°C/min to -40°C. If freezing unit can compensate for the heat of fusion, maintain rate at -1°C/min through heat of fusion. At  -50°C ampules are plunged into liquid nitrogen.

8.   Store in the vapor or liquid phase of a nitrogen

      refrigerator.

9.   To establish a culture from the frozen state aseptically add 0.5 ml sterile Dryl's Salt Solution to an ampule. Immediately place the ampule in a 35°C water bath, until thawed (2-3 min).  Immerse the ampule just sufficient to cover the frozen material. Do not agitate the ampule.

10. Immediately after thawing, aseptically remove the contents of the ampule and inoculate into 5.0 ml of fresh medium in a 16 x 125 mm screw-capped test tube with a slightly loosened cap. Incubate at 25°C.

CRYOPRESERVATION:

Alternative Thawing Procedure

 1.  Aseptically  add 0.5 ml of sterile modified PYNFH medium (ATCC Medium 1034) containing 8% (w/v) sucrose to the ampule.  Immediately, place in a 35°C water bath, until thawed. Immerse the ampule just sufficient to cover the frozen material. Do not agitate the ampule.

2.   Immediately after thawing, aseptically remove the contents of the ampule and gently add the material to the edge of a 20 x 100 mm petri plate containing ATCC Medium 919 (non-nutrient agar) and position on a 15 degree slant.  The cell suspension will pool at the edge of the plate.

3.   Continue to double the volume of the cell suspension at 10

minute intervals by adding ATCC medium 1034) containing 4% sucrose (w/v).  When the volume reaches 16.0 ml place the plate in horizontal position and incubate at 25°C. 

4.   On the following day, gently remove the cell suspension for the plate and transfer to a T-25 tissue culture flask.  Note the volume of the suspension and add a volume of fresh medium containing 4% sucrose equal to the volume of  the cell suspension.  Incubate the culture at 25°C.

5.   After culture has been established subculture into fresh

      normal medium without sucrose. 

Name of Depositor AM Elliott
References

Borden D, et al. Electrophoretic characterization of classical Tetrahymena pyriformis strains. J. Protozool. 20: 693-700, 1973. PubMed: 4148695

Corliss JO. Comparative studies on holotrichous ciliates in the Colpidium-Glaucoma-Leucophrys-Tetrahymena group. I. General consideration and history of strains in pure culture. Trans. Am. Microsc. Soc. 71: 159-184, 1952.

Williams NE, et al. Protein similarities in the genus Tetrahymena and a description of Tetrahymena leucophrys n. sp.. J. Protozool. 31: 313-321, 1984.

Jerome CA, Lynn DH. Identifying and distinguishing sibling species in the Tetrahymena pyriformis complex (Ciliophora, Oligohymenophora) using PCR/RFLP analysis of nuclear ribosomal DNA. J. Eukaryot. Microbiol. 43: 492-497, 1996. PubMed: 8976607

Van de Vijver G. Studies on the metabolism of Tetrahymena pyriformis GL. I. Influence of substrates on the respiratory rate. Enzymologia 31: 363-381, 1966. PubMed: 6005407

Volm M. Untersuchungen uber die phosphorsaureester-resistenz und uber den mechanismus der entwicklung dieser resistenz bei Tetrahymena pyriformis. Z. Naturforsch. Sect. C Biosci. 23: 829-833, 1968.

Byfield JE, et al. Micro-assay for in vivo synthesis. Life Sci. 6: 1099-1105, 1967. PubMed: 6033047

Scherbaum O. Studies on the mechanism of synchronous cell division in Tetrahymena pyriformis. Exp. Cell Res. 13: 11-23, 1957. PubMed: 13473832

Cameron IL, Nachtwey DS. DNA synthesis in relation to cell division in Tetrahymena pyriformis. Exp. Cell Res. 46: 385-395, 1967. PubMed: 6026811

Byfield JE, Scherbaum OH. Temperature-dependent decay of RNA and of protein synthesis in a heat-synchronized protozoan. Proc. Natl. Acad. Sci. USA 57: 602-606, 1967.

Whitson GL, et al. Cyclic changes in the alcohol-soluble carbohydrates in synchronized Tetrahymena. I. Fractionation. J. Cell. Physiol. 70: 169-178, 1967. PubMed: 5583332

Nanney DL, et al. Isoenzymic characterization of three mating groups of the Tetrahymena pyriformis complex. J. Protozool. 27: 451-459, 1980.

Travaus D. Growth rate dependency of protein and nucleic acid composition of Tetrahymena pyriformis and the control of synthesis of ribosomal and transfer RNA. Trav. Lab. Carlberg 36: 113-126, 1967.

Scherbaum O, Zeuthen E. Temperature-induced synchronous divisions in the ciliate protozoon Tetrahymena pyriformis growing in synthetic and proteose-peptone media. Exp. Cell Res. 3: 312-325, 1955. PubMed: 13344487

Holm BJ. Inhibition of deoxyribonuclease activity in synchronized Tetrahymena. J. Protozool. 16: 655-659, 1969. PubMed: 5362385

Lazarus LH, Scherbaum OH. Activity of ribosomal phosphodiesterase in a protozoan. Nature 213: 887-888, 1967. PubMed: 4961804

Schmid P. Temperature adaptation of the growth and division process of Tetrahymena pyriformis. I. Adaptation phase. Exp. Cell Res. 45: 460-470, 1967. PubMed: 6021932

Zeuthen E. Thymine starvation by inhibition of uptake and synthesis of thymine- compounds in Tetrahymena. Exp. Cell Res. 50: 37-46, 1968. PubMed: 5650862

Nielsen PJ, Andronis PT. Further electrophoretic characterization of strains of Tetrahymena pyriformis. J. Protozool. 22: 185-187, 1975. PubMed: 807715

Vaudaux PE, et al. Inter-strain variability of structural proteins in Tetrahymena. J. Protozool. 24: 453-458, 1977. PubMed: 915849

Byfield JE, Scherbaum OH. Stability of division-related protein and nucleic acid fractions in synchronized Tetrahymena. J. Cell. Physiol. 70: 265-274, 1967. PubMed: 5586317

Hardin JA, et al. Simultaneous synthesis of histone and DNA in synchronously dividing Tetrahymena pyriformis. J. Cell Biol. 32: 709-717, 1967. PubMed: 6034486

Jaso-Friedmann L, et al. Role of nonspecific cytotoxic cells in the induction of programmed cell death of pathogenic protozoans: participation of the Fas ligand-Fas receptor system. Exp. Parasitol. 96: 75-88, 2000. PubMed: 11052866

Notice: Necessary PermitsPermits

These permits may be required for shipping this product:

  • Customers located in the state of Hawaii will need to contact the Hawaii Department of Agriculture to determine if an Import Permit is required. A copy of the permit or documentation that a permit is not required must be sent to ATCC in advance of shipment.
Basic Documentation