Crithidia mellificae Langridge and McGhee (ATCC® 30254)

Depositor: RB McGhee  /  Biosafety Level: 1

Biosafety Level 1
Isolation
honey bee, Apis mellifera, Athens, GA, 1974
Product Format frozen
Type Strain no
Comments
species description
Riboprinting and taxonomy
Cyclopropane fatty acid
Multiple distinct site-specific elements in miniexon arrays
Medium Medium 355: Crithidia medium
Growth Conditions
Temperature: 25.0°C
Duration: axenic
Protocol: ATCCNO: 11745 SPEC: See general instructions for thawing and storage of frozen material before proceeding. Add thawed contents to a single 16 x 125 mm glass screw-capped test tube of the appropriate medium. Incubate the culture vertically with the cap screwed on tightly. It is essential to establish cultures initially in small volumes. Once established, the culture can be scaled up to larger volumes. Vigorously agitate the culture and aseptically transfer 0.1 ml of culture to a fresh tube of medium weekly.
Subcultivation
Protocol: ATCCNO: 11745 SPEC: See general instructions for thawing and storage of frozen material before proceeding. Add thawed contents to a single 16 x 125 mm glass screw-capped test tube of the appropriate medium. Incubate the culture vertically with the cap screwed on tightly. It is essential to establish cultures initially in small volumes. Once established, the culture can be scaled up to larger volumes. Vigorously agitate the culture and aseptically transfer 0.1 ml of culture to a fresh tube of medium weekly.
Cryopreservation

1.   Prepare a 10% (v/v) sterile DMSO solution in fresh ATCC Medium 355. 

2.   Transfer a culture at peak density to centrifuge tubes and centrifuge at 525 x g for 5 minutes.

3.   Remove the supernatant and resuspend the cells in ATCC medium 355 to a concentration of 2 x 106 to 2 x 107 cells/ml.

4.   Mix the cell preparation and the DMSO in equal portions. Thus, the final concentration will be between 106 and 107 cells/ml and 5% (v/v) DMSO.

5.   Distribute the cell suspension in 0.5 ml aliquots into 1.0-2.0 ml sterile plastic screw-capped cryules (special plastic vials for cryopreservation).  The time from the mixing of the cell preparation and DMSO stock solution before the freezing process is begun should be no less than 15 min and no longer than 30 min.

6.   Place the vials in a controlled rate freezing unit.  From room temperature cool at -1°C/min to -40°C.  If the freezing unit can compensate for the heat of fusion, maintain rate at        -1°C/min through the heat of fusion.  At -40°C plunge into liquid nitrogen. Alternatively, place the vials in a Nalgene 1°C freezing apparatus.  Place the apparatus at -80°C for 1.5 to 2 hours and then plunge ampules into liquid nitrogen.  (The cooling rate in this apparatus is approximately             -1°C/min.)  

7. The frozen preparations are stored in either the vapor or liquid phase of a nitrogen freezer.

8.   To establish a culture from the frozen state place an ampule in a water bath set at 35°C (2-3 min). Immerse the vial just sufficient to cover the frozen material. Do not agitate the vial.

9.   Immediately after thawing, aseptically remove the contents of the ampule and inoculate into 5 ml of fresh ATCC medium 355 in a 16 x 125 mm screw-capped test tube. Incubate upright at 25°C with caps screwed on tightly.

Name of Depositor RB McGhee
Year of Origin 1974
References

Langridge DF, McGhee RB. Crithidia mellificae n. sp. an acidophilic trypanosomatid of the honey bee Apis mellifera. J. Protozool. 14: 485-487, 1967. PubMed: 6050656

Clark CG. Riboprinting: A tool for the study of genetic diversity in microorganisms. J. Eukaryot. Microbiol. 44: 277-283, 1997. PubMed: 9225441

Fish WR, et al. The cyclopropane fatty acid of trypanosomatids. Mol. Biochem. Parasitol. 3: 103-115, 1981. PubMed: 7254247

Teng SC, et al. A new non-LTR retrotransposon provides evidence for multiple distinct site-specific elements in Crithidia fasciculata miniexon arrays. Nucleic Acids Res. 23: 2929-2936, 1995. PubMed: 7659515

Cho J, Eichinger D. Crithidia fasciculata induces encystation of Entamoeba invadens in a galactose-dependent manner. J. Parasitol. 84: 705-710, 1998. PubMed: 9714198