Phanerochaete chrysosporium Burdsall, teleomorph (ATCC® 24725)

Alternate State: Sporotrichum pulverulentum Novobranova, anamorph, Sporotrichum pruinosum Gilman et Abbott, anamorph  /  Strain Designations: VKM F-1767 [CBS 481.73, CCRC 36200, IMI 174727, NRRL 6361, QM 9998]  /  Product Format: freeze-dried

Permits and Restrictions

View Permits

Deposited As Sporotrichum pulverulentum Novobranova, anamorph
Strain Designations VKM F-1767 [CBS 481.73, CCRC 36200, IMI 174727, NRRL 6361, QM 9998]
Alternate State Sporotrichum pulverulentum Novobranova, anamorph, Sporotrichum pruinosum Gilman et Abbott, anamorph
Application
Bacterial resistance testing adhesives
Degrades 1,1-dichloro-2,2-bis(4-chlorophenyl)ethene DDE
Degrades 2,4,5-trichlorophenol
Degrades 2,4,5-trichlorophenoxyacetic acid 2,4,5-T
Degrades 2,4,6-trichlorophenol
Degrades 2,4,6-trinitrotoluene TNT
Degrades 3,4-dichloroaniline
Degrades Congo red Congo Red
Degrades DDT
Degrades acid yellow 9
Degrades aldrin
Degrades amaranth
Degrades atrazine
Degrades azo dyes
Degrades azure B Azure B
Degrades benzene
Degrades benzo(a)pyrene
Degrades biphenyl
Degrades chlordane
Degrades creosote
Degrades cyclonite RDX, cyclotrimethylene trinitramine
Degrades dieldrin
Degrades ethylbenzene
Degrades fluorene
Degrades heptachlor
Degrades humic acid
Degrades lignin
Degrades lindane
Degrades mirex
Degrades o-chlorophenol
Degrades olive-mill wastewater
Degrades orange G Orange G
Degrades orange II Orange II
Degrades pentachlorophenol
Degrades phenanthrene
Degrades polychlorinated biphenyls
Degrades polycyclic aromatic hydrocarbons
Degrades rose Bengal
Degrades sulfanilic acid
Degrades toluene
Degrades tropaeolin O
Degrades veratryl alcohol
Degrades xylene
Fungus resistance testing adhesives
Produces N-(chlorophenol)-succinimides
Produces NAD(P)H menadione oxidoreductase 1, dioxin-inducible NADH: quinone oxidoreductase, NADH dehydrogenase (quinone)
Produces aryl-alcohol dehydrogenase
Produces cellobiose dehydrogenase (quinone) cellobiose:quinone oxidoreductase
Produces coal-solubilizing agent
Produces glyoxal oxidase
Produces lignin peroxidase diarylpropane oxygenase
Produces manganese peroxidase
Produces peroxidase
Produces xylan endo-1,3-beta-xylosidase xylan hydrolase, xylanase
Degrades diuron
Biosafety Level 1
Product Format freeze-dried
Storage Conditions Frozen: -80°C or colder
Freeze-Dried: 2°C to 8°C
Live Culture: See Propagation Section
Type Strain yes (type strain of Sporotrichum pulverulentum)
Preceptrol® no
Genome Sequenced Strain

Yes

Comments
Vitis vinifera
UV- and benomyl-resistant
Degrades pine and straw alkali lignins
Degrades pulp and paper-mill wastewater
Degrades fluorene in soil
Degrades veratryl alcohol and its methyl ether by lignin peroxidase
Decolorizes textile-industry wastewater
Parental strain of RP-78 (genome sequencing strain by the Joint Genome Institute at the Department of Energy, USA)
This strain is also known as BKM-F-1767.
Medium ATCC® Medium 200: YM agar or YM broth
ATCC® Medium 324: Malt extract agar
ATCC® Medium 336: Potato dextrose agar (PDA)
Growth Conditions
Temperature: 20°C to 25°C
Atmosphere: Typical aerobic
Sequenced Data
No DNA sequencing was performed in house on this item.  

Name of Depositor LA Beljakova
Chain of Custody
ATCC <-- LA Beljakova <-- TI Novobranova
Isolation Fruit and petiole of Vitis vinifera, Alma Ata Region, Kazakhstan
Cross References

Nucleotide (GenBank) : L18991 glyoxal oxidase cDNA

Nucleotide (GenBank) : Z11729 cellobiohydrolase CBH1-6 gene, 3' end

Nucleotide (GenBank) : X15599 Phanerochaete chrysosporium LIP2 gene for lignin peroxidase.

Nucleotide (GenBank) : M18794 Phanerochaete chrysosporium ligninase precursor, mRNA, complete

Nucleotide (GenBank) : M21913 Phanerochaete chrysosporium peroxidase isozyme H8 mRNA, partial

Nucleotide (GenBank) : X51590 Phanerochaete chrysosporium GLG3 (LIP) gene for lignin peroxidase

Nucleotide (GenBank) : X12698 Phanerochaete chrysosporium mRNA for ligninase (rLDM(TM)6) apoprotein

Nucleotide (GenBank) : AADS01000000 Phanerochaete chrysosporium RP-78, whole genome shotgun sequencing project.

References

Paszczynski A, et al. Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol. Lett. 29: 37-41, 1985.

Leisola MS, et al. Homology among multiple extracellular peroxidases from Phanerochaete chrysosporium. J. Biol. Chem. 262: 419-424, 1987. PubMed: 2432065

Troller J, et al. Crystallization of a lignin peroxidase from the white-rot fungus Phanerochaete chrysosporium. Bio-Technology 6: 571-573, 1988.

Kersten PJ, Kirk TK. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J. Bacteriol. 169: 2195-2201, 1987. PubMed: 3553159

George EJ, Newfeld RD. Degradation of fluorene in soil by fungus Phanerochaete chrysosporium. Biotechnol. Bioeng. 33: 1306-1310, 1989.

Schmidt HW, et al. Oxidative degradation of 3,4-dimethoxybenzyl alcohol and its methyl ether by the lignin peroxidase of Phanerochaete chrysosporium. Biochemistry 28: 1776-1783, 1989.

Lin JE, et al. Degradation kinetics of pentachlorophenol by Phanerochaete chrysosporium. Biotechnol. Bioeng. 35: 1125-1134, 1990.

Cripps C, et al. Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 56: 1114-1118, 1990. PubMed: 2339873

Ryan TP, Bumpus JA. Biodegradation of 2,4,5-trichlorophenoxyacetic acid in liquid culture and in soil by the white rot fungus Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 31: 302-307, 1989.

Kennedy DW, et al. Comparative biodegradation of alkyl halide insecticides by the white rot fungus, Phanerochaete chrysosporium (BKM-F-1767). Appl. Environ. Microbiol. 56: 2347-2353, 1990. PubMed: 1698348

Dehorter B, Blondeau R. Extracellular enzyme activities during humic acid degradation by the white rot fungi Phanerochaete chrysosporium and Trametes versicolor. FEMS Microbiol. Lett. 94: 209-216, 1992.

Kersten PJ, Cullen D. Cloning and characterization of a cDNA encoding glyoxal oxidase, a H2O2-producing enzyme from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Proc. Natl. Acad. Sci. USA 90: 7411-7413, 1993. PubMed: 8346264

Mougin C, et al. Biotransformation of the herbicide atrazine by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 60: 705-708, 1994.

Bumpus JA, Tatarko M. Biodegradation of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium: identification of initial degradation products and the discovery of a TNT metabolite that inhibits lignin peroxidases. Curr. Microbiol. 28: 185-190, 1994.

Armenante PM, et al. Role of mycelium and extracellular protein in the biodegradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 60: 1711-1718, 1994. PubMed: 8031074

Leisola M, et al. Production and identification of extracellular oxidases of Phanerochaete chrysosporium. J. Biotechnol. 2: 379-382, 1985.

Novobranova TI. New spp. of fungi imperfecti from the Alma-Ata region. Nov. Sist. Nizshikh. Rast. 9: 180-187, 1972.

Torzilli AP, Isbister JD. Comparison of coal solubilization by bacteria and fungi. Biodegradation 5: 55-62, 1994.

Bumpus JA, et al. Biodegradation of DDE (1,1-dichloro-2,2-bis(4-chlorophenyl)ethene) by Phanerochaete chrysosporium. Mycol. Res. 97: 95-98, 1993.

Mougin C, et al. Biotransformation of the insecticide lindane by the white rot basidiomycete Phanerochaete chrysosporium. Pestic. Sci. 47: 51-59, 1996.

Gogna E, et al. Biodegradation of rose Bengal by Phanerochaete chrysosporium. Lett. Appl. Microbiol. 14: 58-60, 1992.

Bumpus JA. Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 55: 154-158, 1989. PubMed: 2705768

Yadav JS, Reddy CA. Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 59: 756-762, 1993. PubMed: 8481002

Lewandowski GA, et al. Reactor design for hazardous waste treatment using a white rot fungus. Water Res. 24: 75-82, 1990.

Wood JD, Wood PM. Evidence that cellobiose:quinone oxidoreductase from Phanerochaete chrysosporium is a breakdown product of cellobiose oxidase. Biochim. Biophys. Acta 1119: 90-96, 1992. PubMed: 1540640

Burdsall HH Jr., Eslyn WE. A new Phanerochaete with a Chrysosporium imperfect state. Mycotaxon 1: 123-133, 1974.

Capalash N, Sharma P. Biodegradation of textile azo-dyes by Phanerochaete chrysosporium. World J. Microbiol. Biotechnol. 8: 309-312, 1992.

Covert SF, et al. Genomic organization of a cellulase gene family in Phanerochaete chrysosporium [published erratum appears in Curr. Genet. 23: 374, 1993]. Curr. Genet. 22: 407-413, 1992. PubMed: 1423728

. . J. Biotechnol. 24: 267-275, 1992.

Armenante PM, et al. Mineralization of 2-chlorophenol by Phanerochaete chrysosporium using different reactor designs. Hazard. Waste Hazard. Mater. 9: 213-229, 1992.

Muheim A, et al. Purification and properties of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. Eur. J. Biochem. 195: 369-375, 1991. PubMed: 1997322

Sayadi S, Ellouz R. Decolourization of olive mill waste-waters by the white-rot fungus Phanerochaete chrysosporium: involvement of the lignin-degrading system. Appl. Microbiol. Biotechnol. 37: 813-817, 1992.

Pal N, et al. Process optimization and modeling of trichlorophenol degradation by Phanerochaete chrysosporium. Biotechnol. Bioeng. 46: 599-609, 1995.

. . Acta Biotechnol. 12: 191-201, 1992.

Kirby N, et al. Decolourisation of an artificial textile effluent by Phanerochaete chrysosporium. Biotechnol. Lett. 17: 761-764, 1995.

Chao WL, Lee SL. Decoloration of azo dyes by three white-rot fungi: influence of carbon source. World J. Microbiol. Biotechnol. 10: 556-559, 1994.

Bumpus JA, Aust SD. Biodegradation of DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 53: 2001-2008, 1987. PubMed: 3674869

Mileski GJ, et al. Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 54: 2885-2889, 1988. PubMed: 3223759

Fernando T, et al. Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 56: 1666-1671, 1990. PubMed: 2383008

Dhawale SW, et al. Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic as well as nonligninolytic conditions. Appl. Environ. Microbiol. 58: 3000-3006, 1992. PubMed: 1444413

Dobozi MS, et al. Xylanase activity of Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 3466-3471, 1992.

Paszczynski A, et al. Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus. Appl. Environ. Microbiol. 58: 3598-3604, 1992. PubMed: 1482182

Pasti-Grigsby MB, et al. Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 3605-3613, 1992. PubMed: 1482183

Camarero S, et al. Preferential degradation of phenolic lignin units by two white rot fungi. Appl. Environ. Microbiol. 60: 4509-4516, 1994. PubMed: 7811086

Bogan BW, Lamar RT. One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 61: 2631-2635, 1995. PubMed: 7618875

Hatakka A. Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol. Rev. 13: 125-135, 1994.

Tuisel H, et al. Lignin peroxidase H2 from Phanerochaete chrysosporium: purification, characterization and stability to temperature and pH. Arch. Biochem. Biophys. 279: 158-166, 1990. PubMed: 2337347

Kersten PJ. Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proc. Natl. Acad. Sci. USA 87: 2936-2940, 1990. PubMed: 11607073

Thomas DR, et al. Mineralization of biphenyl and PCBs by the white rot fungus Phanerochaete chrysosporium. Biotechnol. Bioeng. 40: 1395-1402, 1992.

Constam D, et al. Purification and partial characterization of an intracellular NADH:quinone oxidoreductase from Phanerochaete chrysosporium. J. Gen. Microbiol. 137: 2209-2214, 1991.

Katayama A, Matsumura F. Photochemically enhanced microbial degradation of environmental pollutants. Environ. Sci. Technol. 25: 1329-1333, 1991.

Sublette KL, et al. Degradation of munition wastes by Phanerochaete chrysosporium. Appl. Biochem. Biotechnol. 34/35: 709-723, 1992.

Hickey WJ, et al. Transformation of atrazine in soil by Phanerochaete chrysosporium. Soil Biol. Biochem. 26: 1665-1671, 1994.

ASTM International Standard Test Methods for Ability of Adhesive Films to Support or Resist the Growth of Fungi. West Conshohocken, PA:ASTM International;ASTM Standard Test Method D 4300-01.

ASTM International Standard Test Methods for Resistance of Adhesive Preparations in Container to Attack by Bacteria, Yeast, and Fungi. West Conshohocken, PA:ASTM International;ASTM Standard Test Method D 4783-01e1.

Palma C, et al. Enhanced catalytic properties of MnP by exogenous addition of manganese and hydrogen peroxide. Biotechnol. Lett. 19: 263-267, 1997.

May R, et al. Ex-situ process for treating PAH-contaminated soil with Phanerochaete chrysosporium. Environ. Sci. Technol. 31: 2626-2633, 1997.

Moreira MT, et alEffect of pulsation on morphology of Aspergillus niger and Phanerochaete chrysosporium in a fluidized-bed reactorIn: Moreira MT, et alImmobilized cells: basics and applicationsAmsterdamElsevierpp. 518-523, 1996

Hawari J, et al. Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures ot pH 4.5. Appl. Environ. Microbiol. 65: 2977-2986, 1999. PubMed: 10388692

Krcmar P, et al. Degradation of polychlorinated biphenyls by extracellular enzymes of Phanerochaete chrysosporium produced in a perforated plate bioreactor. World J. Microbiol. Biotechnol. 15: 237-242, 1999.

Janshekar H, et al. Fungal degradation of pine and straw alkali lignins. Eur. J. Appl. Microbiol. Biotechnol. 14: 174-181, 1982.

Arjmand M, Sandermann H Jr.. N-(Chlorophenyl)-succinimides, a novel metabolite class isolated from Phanerochaete chrysosporium. Pestic. Biochem. Physiol. 27: 173-181, 1987.

Farrell RL, et al. Physical and enzymatic properties of lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Enzyme Microb. Technol. 11: 322-328, 1989.

Galeno G, Agosin E. Screening of white-rot fungi for efficient decolourization of bleach pulp effluents. Biotechnol. Lett. 12: 869-872, 1990.

Morgan P, et al. Growth and biodegradation by white-rot fungi inoculated into soil. Soil Biol. Biochem. 25: 279-287, 1993.

type strain of Sporotrichum pulverulentum

Fratila-Apachitei LE, et al. Diuron degradation by Phanerochaete chrysosporium BKM-F-1767 in synthetic and natural media. Biotechnol. Lett. 21: 147-154, 1999.

Stewart P, Gaskell J, Cullen D. A homokaryotic derivative of a Phanerochaete chrysosporium strain and its use in genomic analysis of repetitive elements. Appl Environ Microbiol. 66: 1629-1633, 2000.

Doddapaneni H, Chakraborty R, Yadav JS. Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering. BMC Genomics 6: 92, 2005.

type strain of Sporotrichum pulverulentum

Notice: Necessary PermitsPermits

These permits may be required for shipping this product:

  • Customers located in the state of Hawaii will need to contact the Hawaii Department of Agriculture to determine if an Import Permit is required. A copy of the permit or documentation that a permit is not required must be sent to ATCC in advance of shipment.
Basic Documentation