WPE1-NB26-65 (ATCC® CRL-2890)

Organism: Homo sapiens, human  /  Cell Type: epithelialHPV-18 transfected  /  Disease: hepatitis

Permits and Restrictions

View Permits

Organism Homo sapiens, human
Cell Type epithelialHPV-18 transfected
Product Format frozen
Morphology epithelial
Culture Properties adherent
Biosafety Level 2 cells containing human HPV-18 viral DNA sequences
Disease hepatitis
Age 54
Gender male
Ethnicity Caucasian
Applications
WPE1-NB26-65 and WPE1-NB26-64 (ATCC CRL-2889) were derived from a subcutaneous tumor in a nude mouse injected with WPE1-NB26 (ATCC CRL-2852).
They secrete matrix metalloproteinases 9 and 2 (MMP-9 and MMP-2) into the culture medium while the parent line produces barely detectable levels.
WPE1-NB26-65 secretes 40% higher levels of MMP-2 than WPE1-NB26-64. [PubMed: 16471037] WPE1-NB26 cells belong to a family of cell lines, referred to as the MNU cell lines, which are all derived from RWPE-1 (ATCC CRL-11609) cells after exposure to MNU. The MNU cell lines, in order of increasing malignancy are: WPE1-NA22 (ATCC CRL-2849), WPE1-NB14 (ATCC CRL-2850), WPE1-NB11 (ATCC CRL-2851) and WPE1-NB26 (ATCC CRL-2852).
Storage Conditions liquid nitrogen vapor phase
Images
Derivation
WPE1-NB26-65 and WPE1-NB26-64 (ATCC CRL-2889) were derived from a subcutaneous tumor in a nude mouse injected with WPE1-NB26 (ATCC CRL-2852). They secrete matrix metalloproteinases 9 and 2 (MMP-9 and MMP-2) into the culture medium while the parent line produces barely detectable levels. WPE1-NB26-65 secretes 40% higher levels of MMP-2 than WPE1-NB26-64. [PubMed: 16471037] WPE1-NB26 cells belong to a family of cell lines, referred to as the MNU cell lines, which are all derived from RWPE-1 (ATCC CRL-11609) cells after exposure to MNU. The MNU cell lines, in order of increasing malignancy are: WPE1-NA22 (ATCC CRL-2849), WPE1-NB14 (ATCC CRL-2850), WPE1-NB11 (ATCC CRL-2851) and WPE1-NB26 (ATCC CRL-2852). The WPE1-NB26-64 and WPE1-NB26-65 cell lines show an increase in anchorage-dependent growth and invasive ability as compared to the parent WPE1-NB26.
    The depositor reports that the parent RWPE-1 cell line was screened for Hepatitis B (HBV, Hepatitis C (HCV) and human immunodeficiency (HIV) viruses and was found to be negative.
Clinical Data
male
Caucasian
54
Antigen Expression
kallikrein 3 ( KLK3); prostate specific antigen (PSA); upon exposure to androgen
Receptor Expression
androgen receptor, expressed
Genes Expressed
kallikrein 3 ( KLK3); prostate specific antigen (PSA); upon exposure to androgen
Tumorigenic YES
Comments
WPE1-NB26-65 and WPE1-NB26-64 (ATCC CRL-2889) were derived from a subcutaneous tumor in a nude mouse injected with WPE1-NB26 (ATCC CRL-2852). They secrete matrix metalloproteinases 9 and 2 (MMP-9 and MMP-2) into the culture medium while the parent line produces barely detectable levels. WPE1-NB26-65 secretes 40% higher levels of MMP-2 than WPE1-NB26-64. [PubMed: 16471037] WPE1-NB26 cells belong to a family of cell lines, referred to as the MNU cell lines, which are all derived from RWPE-1 (ATCC CRL-11609) cells after exposure to MNU. The MNU cell lines, in order of increasing malignancy are: WPE1-NA22 (ATCC CRL-2849), WPE1-NB14 (ATCC CRL-2850), WPE1-NB11 (ATCC CRL-2851) and WPE1-NB26 (ATCC CRL-2852). The WPE1-NB26-64 and WPE1-NB26-65 cell lines show an increase in anchorage-dependent growth and invasive ability as compared to the parent WPE1-NB26.
    The depositor reports that the parent RWPE-1 cell line was screened for Hepatitis B (HBV, Hepatitis C (HCV) and human immunodeficiency (HIV) viruses and was found to be negative.
Complete Growth Medium The base medium for this cell line is provided by Invitrogen (GIBCO) as part of a kit: Keratinocyte Serum Free Medium (K-SFM), Kit Catalog Number 17005-042. This kit is supplied with each of the two additives required to grow this cell line (bovine pituitary extract (BPE) and human recombinant epidermal growth factor (EGF). To make the complete growth medium, you will need to add the following components to the base medium:
  • 0.05 mg/ml BPE - provided with the K-SFM kit
  • 5 ng/ml EGF - provided with the K-SFM kit. NOTE: Do not filter complete medium.
  • Subculturing
    Protocol: Volumes used in this protocol are for 75 cm2 flasks; proportionally reduce or increase amount of dissociation medium for culture vessels of other sizes.
    1. Remove and discard culture medium.
    2. Briefly rinse the cell layer with Ca++/Mg++ free Dulbecco's phosphate-buffered saline (D-PBS).
    3. Add 3.0 to 4.0 ml of 0.05% Trypsin - 0.53mM EDTA solution, diluted 1:1 with D-PBS, and place flask in a 37°C incubator for 5 to 8 minutes. Observe cells under an inverted microscope until cell layer is dispersed (usually within 5 to 10 minutes).
      Note: To avoid clumping do not agitate the cells by hitting or shaking the flask while waiting for the cells to detach.
    4. Add 6.0 to 8.0 ml of 0.1% Soybean Trypsin Inhibitor (or 2% fetal bovine serum in D-PBS), as appropriate, and aspirate cells by gently pipetting.
    5. Transfer cell suspension to centrifuge tube and spin at approximately 125 x g for 5 to 7 minutes.
    6. Discard supernatant and resuspend cells in fresh serum-free growth medium. Add appropriate aliquots of cell suspension to new culture vessels. An inoculum of 6 X 10(3) to 7 X 10(3) viable cells/sq. cm is recommended.
    7. Incubate cultures at 37°C. We recommend that you maintain cultures at a cell concentration between 4 X 10(4) and 6 X 10(4) cells/sq. cm.
    Cells grown under serum-free or reduced serum conditions may not attach strongly during the 24 hours after subculture and should be disturbed as little as possible during that period.
    Subcultivation Ratio: A subcultivation ratio of 1:3 to 1:5 is recommended
    Medium Renewal: Every 48 hours
    Cryopreservation
    Freeze medium: Complete growth medium described above supplemented with 15% fetal bovine serum and 10% (v/v) DMSO. Cell culture tested DMSO is available as ATCC Catalog No. 4-X.
    Storage temperature: liquid nitrogen vapor phase
    Culture Conditions
    Atmosphere: air, 95%; carbon dioxide (CO2), 5%
    Temperature: 37°C
    Growth Conditions: Subculture cells before they reach confluence. Do not allow cells to become confluent.
    STR Profile
    Amelogenin: X,Y
    CSF1PO: 13
    D13S317: 8,14
    D16S539: 9,11
    D5S818: 12,15
    D7S820: 10,11
    THO1: 8
    TPOX: 8,11
    vWA: 14,18
    Population Doubling Time about 23 hours
    Name of Depositor MM Webber
    Year of Origin 1994
    References

    Bello D, et al. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 18: 1215-1223, 1997. PubMed: 9214605

    Webber MM, et al. Acinar differentiation by non-malignant immortalized human prostatic epithelial cells and its loss by malignant cells. Carcinogenesis 18: 1225-1231, 1997. PubMed: 9214606

    Webber MM, et al. Prostate specific antigen and androgen receptor induction and characterization of an immortalized adult human prostatic epithelial cell line. Carcinogenesis 17: 1641-1646, 1996. PubMed: 8761420

    Okamoto M, et al. Interleukin-6 and epidermal growth factor promote anchorage-independent growth of immortalized human prostatic epithelial cells treated with N-methyl-N-nitrosourea. Prostate 35: 255-262, 1998. PubMed: 9609548

    Webber MM, et al. Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications. Part I. Cell markers and immortalized nontumorigenic cell lines. Prostate 29: 386-394, 1996. PubMed: 8977636

    Webber MM, et al. Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications Part 2. Tumorigenic cell lines. Prostate 30: 58-64, 1997. PubMed: 9018337

    Webber MM, et al. Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications. Part 3. Oncogenes, suppressor genes, and applications. Prostate 30: 136-142, 1997. PubMed: 9051152

    Kremer R, et al. ras Activation of human prostate epithelial cells induces overexpression of parathyroid hormone-related peptide. Clin. Cancer Res. 3: 855-859, 1997. PubMed: 9815759

    Jacob K, et al. Osteonectin promotes prostate cancer cell migration and invasion: a possible mechanism for metastasis to bone. Cancer Res. 59: 4453-4457, 1999. PubMed: 10485497

    Achanzar WE, et al. Cadmium induces c-myc, p53, and c-jun expression in normal human prostate epithelial cells as a prelude to apoptosis. Toxicol. Appl. Pharmacol. 164: 291-300, 2000. PubMed: 10799339

    Achanzar WE, et al. Cadmium-induced malignant transformation of human prostate epithelial cells. Cancer Res. 61: 455-458, 2001. PubMed: 11212230

    Bello-DeOcampo D, et al. Laminin-1 and alpha6beta1 integrin regulate acinar morphogenesis of normal and malignant human prostate epithelial cells. Prostate 46: 142-153, 2001. PubMed: 11170142

    Webber MM, et al. Human cell lines as an in vitro/in vivo model for prostate carcinogenesis and progression. Prostate 47: 1-13, 2001. PubMed: 11304724

    Quader ST, et al. Evaluation of the chemopreventive potential of retinoids using a novel in vitro human prostate carcinogenesis model. Mutat. Res. 496: 153-161, 2001. PubMed: 11551491

    Webber MM, et al. A human prostatic stromal myofibroblast cell line WPMY-1: a model for stromal-epithelial interactions in prostatic neoplasia. Carcinogenesis 20: 1185-1192, 1999. PubMed: 10383888

    Bello-DeOcampo D, et al. The role of alpha 6 beta 1 integrin and EGF in normal and malignant acinar morphogenesis of human prostatic epithelial cells. Mutat. Res. 480-481: 209-217, 2001. PubMed: 11506815

    upregulated upon exposure to androgen

    Webber MM, et al. Modulation of the malignant phenotype of human prostate cancer cells by N-(4-hydroxyphenyl)retinamide (4-HPR). Clin. Exp. Metastasis 17: 255-263, 1999. PubMed: 10432011

    Sharp RM, et al. N-(4-hydroxyphenyl)retinamide (4-HPR) decreases neoplastic properties of human prostate cells: an agent for prevention. Mutat. Res. 496: 163-170, 2001. PubMed: 11551492

    Carruba G, et al. Regulation of cell-to-cell communication in non-tumorigenic and malignant human prostate epithelial cells. Prostate 50: 73-82, 2002. PubMed: 11816015

    Achanzar WE, et al. Altered apoptotic gene expression and acquired apoptotic resistance in cadmium-transformed human prostate epithelial cells. Prostate 52: 236-244, 2002. PubMed: 12111698

    Carruba G, et al. Intercellular communication and human prostate carcinogenesis. Ann. N.Y. Acad. Sci. 963: 156-168, 2002. PubMed: 12095941

    Saladino F, et al. Connexin expression in nonneoplastic human prostate epithelial cells. Ann. N.Y. Acad. Sci. 963: 213-217, 2002. PubMed: 12095946

    Hegarty PK, et al. Effects of cyclic stretch on prostatic cells in culture. J. Urol. 168: 2291-2295, 2002. PubMed: 12394777

    Lugassy C, et al. Human melanoma cell migration along capillary-like structures in vitro: a new dynamic model for studying extravascular migratory metastasis. J. Invest. Dermatol. 119: 703-704, 2002. PubMed: 12230517

    Brambila EM, et al. Chronic arsenic-exposed human prostate epithelial cells exhibit stable arsenic tolerance: mechanistic implications of altered cellular glutathione and glutathione S-transferase. Toxicol. Appl. Pharmacol. 183: 99-107, 2002. PubMed: 12387749

    Achanzar WE, et al. Inorganic arsenite-induced malignant transformation of human prostate epithelial cells. J. Natl. Cancer Inst. 94: 1888-1891, 2002. PubMed: 12488483

    Rivette AS, et al. Selection of cell lines with enhanced invasive phenotype from xenografts of the human prostate cancer cell line WPE1-NB26. J. Exp. Ther. Oncol. 5: 111-123, 2005. PubMed: 16471037

    Notice: Necessary PermitsPermits

    These permits may be required for shipping this product:

    • Customers located in the state of Hawaii will need to contact the Hawaii Department of Agriculture to determine if an Import Permit is required. A copy of the permit or documentation that a permit is not required must be sent to ATCC in advance of shipment.
    Basic Documentation
    Other Documentation
    References

    Bello D, et al. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 18: 1215-1223, 1997. PubMed: 9214605

    Webber MM, et al. Acinar differentiation by non-malignant immortalized human prostatic epithelial cells and its loss by malignant cells. Carcinogenesis 18: 1225-1231, 1997. PubMed: 9214606

    Webber MM, et al. Prostate specific antigen and androgen receptor induction and characterization of an immortalized adult human prostatic epithelial cell line. Carcinogenesis 17: 1641-1646, 1996. PubMed: 8761420

    Okamoto M, et al. Interleukin-6 and epidermal growth factor promote anchorage-independent growth of immortalized human prostatic epithelial cells treated with N-methyl-N-nitrosourea. Prostate 35: 255-262, 1998. PubMed: 9609548

    Webber MM, et al. Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications. Part I. Cell markers and immortalized nontumorigenic cell lines. Prostate 29: 386-394, 1996. PubMed: 8977636

    Webber MM, et al. Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications Part 2. Tumorigenic cell lines. Prostate 30: 58-64, 1997. PubMed: 9018337

    Webber MM, et al. Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications. Part 3. Oncogenes, suppressor genes, and applications. Prostate 30: 136-142, 1997. PubMed: 9051152

    Kremer R, et al. ras Activation of human prostate epithelial cells induces overexpression of parathyroid hormone-related peptide. Clin. Cancer Res. 3: 855-859, 1997. PubMed: 9815759

    Jacob K, et al. Osteonectin promotes prostate cancer cell migration and invasion: a possible mechanism for metastasis to bone. Cancer Res. 59: 4453-4457, 1999. PubMed: 10485497

    Achanzar WE, et al. Cadmium induces c-myc, p53, and c-jun expression in normal human prostate epithelial cells as a prelude to apoptosis. Toxicol. Appl. Pharmacol. 164: 291-300, 2000. PubMed: 10799339

    Achanzar WE, et al. Cadmium-induced malignant transformation of human prostate epithelial cells. Cancer Res. 61: 455-458, 2001. PubMed: 11212230

    Bello-DeOcampo D, et al. Laminin-1 and alpha6beta1 integrin regulate acinar morphogenesis of normal and malignant human prostate epithelial cells. Prostate 46: 142-153, 2001. PubMed: 11170142

    Webber MM, et al. Human cell lines as an in vitro/in vivo model for prostate carcinogenesis and progression. Prostate 47: 1-13, 2001. PubMed: 11304724

    Quader ST, et al. Evaluation of the chemopreventive potential of retinoids using a novel in vitro human prostate carcinogenesis model. Mutat. Res. 496: 153-161, 2001. PubMed: 11551491

    Webber MM, et al. A human prostatic stromal myofibroblast cell line WPMY-1: a model for stromal-epithelial interactions in prostatic neoplasia. Carcinogenesis 20: 1185-1192, 1999. PubMed: 10383888

    Bello-DeOcampo D, et al. The role of alpha 6 beta 1 integrin and EGF in normal and malignant acinar morphogenesis of human prostatic epithelial cells. Mutat. Res. 480-481: 209-217, 2001. PubMed: 11506815

    upregulated upon exposure to androgen

    Webber MM, et al. Modulation of the malignant phenotype of human prostate cancer cells by N-(4-hydroxyphenyl)retinamide (4-HPR). Clin. Exp. Metastasis 17: 255-263, 1999. PubMed: 10432011

    Sharp RM, et al. N-(4-hydroxyphenyl)retinamide (4-HPR) decreases neoplastic properties of human prostate cells: an agent for prevention. Mutat. Res. 496: 163-170, 2001. PubMed: 11551492

    Carruba G, et al. Regulation of cell-to-cell communication in non-tumorigenic and malignant human prostate epithelial cells. Prostate 50: 73-82, 2002. PubMed: 11816015

    Achanzar WE, et al. Altered apoptotic gene expression and acquired apoptotic resistance in cadmium-transformed human prostate epithelial cells. Prostate 52: 236-244, 2002. PubMed: 12111698

    Carruba G, et al. Intercellular communication and human prostate carcinogenesis. Ann. N.Y. Acad. Sci. 963: 156-168, 2002. PubMed: 12095941

    Saladino F, et al. Connexin expression in nonneoplastic human prostate epithelial cells. Ann. N.Y. Acad. Sci. 963: 213-217, 2002. PubMed: 12095946

    Hegarty PK, et al. Effects of cyclic stretch on prostatic cells in culture. J. Urol. 168: 2291-2295, 2002. PubMed: 12394777

    Lugassy C, et al. Human melanoma cell migration along capillary-like structures in vitro: a new dynamic model for studying extravascular migratory metastasis. J. Invest. Dermatol. 119: 703-704, 2002. PubMed: 12230517

    Brambila EM, et al. Chronic arsenic-exposed human prostate epithelial cells exhibit stable arsenic tolerance: mechanistic implications of altered cellular glutathione and glutathione S-transferase. Toxicol. Appl. Pharmacol. 183: 99-107, 2002. PubMed: 12387749

    Achanzar WE, et al. Inorganic arsenite-induced malignant transformation of human prostate epithelial cells. J. Natl. Cancer Inst. 94: 1888-1891, 2002. PubMed: 12488483

    Rivette AS, et al. Selection of cell lines with enhanced invasive phenotype from xenografts of the human prostate cancer cell line WPE1-NB26. J. Exp. Ther. Oncol. 5: 111-123, 2005. PubMed: 16471037