RWPE-1 (ATCC® CRL-11609)

Organism: Homo sapiens, human  /  Cell Type: epithelial  /  Tissue: prostate  /  Disease: normal

Organism Homo sapiens, human
Tissue
prostate
Cell Type epithelial
Product Format frozen
Morphology epithelial
Culture Properties adherent
Biosafety Level 2 [Cells contain Human Papilloma viral (HPV) sequences]
Disease normal
Age 54 years adult
Gender male
Ethnicity Caucasian, White
Storage Conditions liquid nitrogen vapor phase
Karyotype At passage 32, a majority of the cells were in the diploid range (45-51) with two main populations: 45, X,-Y and 51, XY. RefBello D, et al. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 18: 1215-1223, 1997. PubMed: 9214605
Images
Derivation
Epithelial cells derived from the peripheral zone of a histologically normal adult human prostate were transfected with a single copy of the human papilloma virus 18 (HPV-18) to establish the RWPE-1 (ATCC CRL-11609) cell line. RefBello D, et al. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 18: 1215-1223, 1997. PubMed: 9214605
Clinical Data
54 years adult
Caucasian, White
male

Antigen Expression
kallikrein 3, KLK3 (prostate specific antigen, PSA); Homo sapiens, expressed (upon exposure to androgen)
Receptor Expression
androgen receptor, expressed
Genes Expressed

cytokeratin 18, cytokeratin 8, 

Tumor Supressor Gene(s): p53 +, pRB + RefBello D, et al. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 18: 1215-1223, 1997. PubMed: 9214605

Tumorigenic No
Effects
No, in nude mice (with or without Matrigel)
No, in soft agar
Comments

In 3-dimensional Matrigel culture, RWPE-1 cells organize into acini and secrete PSA into the lumen when exposed to androgen. RefBello-DeOcampo D, et al. Laminin-1 and alpha6beta1 integrin regulate acinar morphogenesis of normal and malignant human prostate epithelial cells. Prostate 46: 142-153, 2001. PubMed: 11170142

When injected with Matrigel or with stromal cells, into male athymic rodents, RWPE-1 cells also organize into acini RefWebber MM, et al. Human cell lines as an in vitro/in vivo model for prostate carcinogenesis and progression. Prostate 47: 1-13, 2001. PubMed: 11304724 and produce PSA. 

Cells from the RWPE-1 cell line were further transformed by Ki-ras using the Kirstin murine sarcoma virus (Ki-MuSV) to establish the tumorigenic RWPE-2 cell line (ATCC CRL-11610) RefBello D, et al. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 18: 1215-1223, 1997. PubMed: 9214605 and the RWPE2-W99 (ATCC CRL-2853) cell line. 

Further, a family of tumorigenic cell lines, that mimics multiple steps in prostate cancer progression, was also derived from RWPE-1 cells by exposure to N-methyl-N-nitrosourea (MNU). See the WPE1-NA22 (ATCC CRL-2849), WPE1-NB14 (ATCC CRL-2850, WPE1-NB11 (ATCC CRL-2851) and WPE1-NB26 (ATCC CRL-2852) cell lines.

The depositor reports that the RWPE-1 cell line (ATCC CRL-11609) was screened, and found negative for, Hepatitis B virus, Hepatitis C virus and Human immunodeficiency virus.

ATCC confirmed this cell line is positive for the presence of HPV viral DNA sequences via PCR.

Complete Growth Medium The base medium for this cell line is provided by Invitrogen (GIBCO) as part of a kit: Keratinocyte Serum Free Medium (K-SFM), Kit Catalog Number 17005-042. This kit is supplied with each of the two additives required to grow this cell line (bovine pituitary extract (BPE) and human recombinant epidermal growth factor (EGF). To make the complete growth medium, you will need to add the following components to the base medium:
  • 0.05 mg/ml BPE - provided with the K-SFM kit
  • 5 ng/ml EGF - provided with the K-SFM kit. NOTE: Do not filter complete medium.
  • Subculturing
    Volumes are given for a 75 cm2 flask. Increase or decrease the amount of dissociation medium needed proportionally for culture vessels of other sizes.
    1. Remove and discard culture medium.
    2. Briefly rinse the cell layer with Ca++/Mg++ free Dulbecco's phosphate-buffered saline (D-PBS).
    3. Add 2.0 to 3.0 mL (to a T-25 flask) or 3.0 to 4.0 mL (to a T-75 flask) of 0.05% Trypsin - 0.53mM EDTA solution, diluted 1:1 with D-PBS, and place flask in a 37°C incubator for 5 to 8 minutes. Observe cells under an inverted microscope until cell layer is dispersed (usually within 5 to 10 minutes).
      Note: To avoid clumping do not agitate the cells by hitting or shaking the flask while waiting for the cells to detach.
    4. Add 6.0 to 8.0 mL of 0.1% Soybean Trypsin Inhibitor (or 2% fetal bovine serum in D-PBS), as appropriate, and aspirate cells by gently pipetting.
    5. Transfer cell suspension to centrifuge tube and spin at approximately 125 x g for 5 to 7 minutes.
    6. Discard supernatant and resuspend cells in fresh serum-free growth medium. Add appropriate aliquots of cell suspension to new culture vessels. An inoculum of 2 X 104 to 4 X 104 viable cells/cm2 is recommended.
    7. Incubate cultures at 37°C. We recommend that you maintain cultures at a cell concentration between 4 X 104 and 7 X 10cells/cm2.
    Cells grown under serum-free or reduced serum conditions may not attach strongly during the 24 hours after subculture and should be disturbed as little as possible during that period.
    Subcultivation Ratio: A subcultivation ratio of 1:3 to 1:5 is recommended
    Medium Renewal: Every 2 days
    Cryopreservation
    Freeze medium: Complete growth medium supplemented with 10% (v/v) DMSO and 15% FBS
    Storage temperature: liquid nitrogen vapor phase
    Culture Conditions
    Atmosphere: air, 95%; carbon dioxide (CO2), 5%
    Temperature: 37°C
    STR Profile
    Amelogenin: X,Y
    CSF1PO: 13
    D13S317: 8,14
    D16S539: 9,11
    D5S818: 12,15
    D7S820: 10,11
    THO1: 8,9.3
    TPOX: 8,11
    vWA: 14,18
    Isoenzymes
    AK-1, 1
    ES-D, 2
    G6PD, B
    GLO-I, 1-2
    Me-2, 0
    PGM1, 2
    PGM3, 1
    Name of Depositor Michigan State University, National Cancer Institute
    References

    Webber MM, Rhim JS. Immortalized and malignant human prostatic cell lines. US Patent 5,824,488 dated Oct 20 1998

    Bello D, et al. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 18: 1215-1223, 1997. PubMed: 9214605

    Webber MM, et al. Acinar differentiation by non-malignant immortalized human prostatic epithelial cells and its loss by malignant cells. Carcinogenesis 18: 1225-1231, 1997. PubMed: 9214606

    Okamoto M, et al. Interleukin-6 and epidermal growth factor promote anchorage-independent growth of immortalized human prostatic epithelial cells treated with N-methyl-N-nitrosourea. Prostate 35: 255-262, 1998. PubMed: 9609548

    Webber MM, et al. Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications. Part I. Cell markers and immortalized nontumorigenic cell lines. Prostate 29: 386-394, 1996. PubMed: 8977636

    Webber MM, et al. Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications Part 2. Tumorigenic cell lines. Prostate 30: 58-64, 1997. PubMed: 9018337

    Webber MM, et al. Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications. Part 3. Oncogenes, suppressor genes, and applications. Prostate 30: 136-142, 1997. PubMed: 9051152

    Kremer R, et al. ras Activation of human prostate epithelial cells induces overexpression of parathyroid hormone-related peptide. Clin. Cancer Res. 3: 855-859, 1997. PubMed: 9815759

    Jacob K, et al. Osteonectin promotes prostate cancer cell migration and invasion: a possible mechanism for metastasis to bone. Cancer Res. 59: 4453-4457, 1999. PubMed: 10485497

    Achanzar WE, et al. Cadmium induces c-myc, p53, and c-jun expression in normal human prostate epithelial cells as a prelude to apoptosis. Toxicol. Appl. Pharmacol. 164: 291-300, 2000. PubMed: 10799339

    Achanzar WE, et al. Cadmium-induced malignant transformation of human prostate epithelial cells. Cancer Res. 61: 455-458, 2001. PubMed: 11212230

    Bello-DeOcampo D, et al. Laminin-1 and alpha6beta1 integrin regulate acinar morphogenesis of normal and malignant human prostate epithelial cells. Prostate 46: 142-153, 2001. PubMed: 11170142

    Webber MM, et al. Human cell lines as an in vitro/in vivo model for prostate carcinogenesis and progression. Prostate 47: 1-13, 2001. PubMed: 11304724

    Epithelial cells from a histologically normal adult human prostate were isolated and subsequently transfected with a plasmid carrying one copy of the human papillomavirus 18 (HPV-18) genome to establish the RWPE-1 (ATCC CRL-11609) cell line.

    upon exposure to androgen

    Quader ST, et al. Evaluation of the chemopreventive potential of retinoids using a novel in vitro human prostate carcinogenesis model. Mutat. Res. 496: 153-161, 2001. PubMed: 11551491

    upregulated upon exposure to androgen

    Bello D, et al. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 18: 1215-1223, 1997. PubMed: 9214605

    Basic Documentation
    Other Documentation
    References

    Webber MM, Rhim JS. Immortalized and malignant human prostatic cell lines. US Patent 5,824,488 dated Oct 20 1998

    Bello D, et al. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 18: 1215-1223, 1997. PubMed: 9214605

    Webber MM, et al. Acinar differentiation by non-malignant immortalized human prostatic epithelial cells and its loss by malignant cells. Carcinogenesis 18: 1225-1231, 1997. PubMed: 9214606

    Okamoto M, et al. Interleukin-6 and epidermal growth factor promote anchorage-independent growth of immortalized human prostatic epithelial cells treated with N-methyl-N-nitrosourea. Prostate 35: 255-262, 1998. PubMed: 9609548

    Webber MM, et al. Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications. Part I. Cell markers and immortalized nontumorigenic cell lines. Prostate 29: 386-394, 1996. PubMed: 8977636

    Webber MM, et al. Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications Part 2. Tumorigenic cell lines. Prostate 30: 58-64, 1997. PubMed: 9018337

    Webber MM, et al. Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications. Part 3. Oncogenes, suppressor genes, and applications. Prostate 30: 136-142, 1997. PubMed: 9051152

    Kremer R, et al. ras Activation of human prostate epithelial cells induces overexpression of parathyroid hormone-related peptide. Clin. Cancer Res. 3: 855-859, 1997. PubMed: 9815759

    Jacob K, et al. Osteonectin promotes prostate cancer cell migration and invasion: a possible mechanism for metastasis to bone. Cancer Res. 59: 4453-4457, 1999. PubMed: 10485497

    Achanzar WE, et al. Cadmium induces c-myc, p53, and c-jun expression in normal human prostate epithelial cells as a prelude to apoptosis. Toxicol. Appl. Pharmacol. 164: 291-300, 2000. PubMed: 10799339

    Achanzar WE, et al. Cadmium-induced malignant transformation of human prostate epithelial cells. Cancer Res. 61: 455-458, 2001. PubMed: 11212230

    Bello-DeOcampo D, et al. Laminin-1 and alpha6beta1 integrin regulate acinar morphogenesis of normal and malignant human prostate epithelial cells. Prostate 46: 142-153, 2001. PubMed: 11170142

    Webber MM, et al. Human cell lines as an in vitro/in vivo model for prostate carcinogenesis and progression. Prostate 47: 1-13, 2001. PubMed: 11304724

    Epithelial cells from a histologically normal adult human prostate were isolated and subsequently transfected with a plasmid carrying one copy of the human papillomavirus 18 (HPV-18) genome to establish the RWPE-1 (ATCC CRL-11609) cell line.

    upon exposure to androgen

    Quader ST, et al. Evaluation of the chemopreventive potential of retinoids using a novel in vitro human prostate carcinogenesis model. Mutat. Res. 496: 153-161, 2001. PubMed: 11551491

    upregulated upon exposure to androgen

    Bello D, et al. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 18: 1215-1223, 1997. PubMed: 9214605