
THE VALUE OF ATCC BIOLOGICAL AND MOLECULAR STANDARDS IN ASSAY DEVELOPMENT

ATCC November 12, 2014

Agenda

ATCC Biological Controls for the Detection and Analysis of Cancer

• Time: 2:00 PM – 2:20 PM

• Speaker: Dr. Fang Tian, Lead Scientist, ATCC Cell Systems

ATCC Standards for Infectious Disease Assay Development

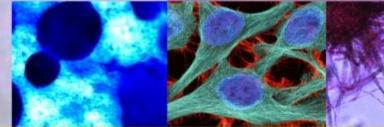
- Time: 2:20 PM 2:40 PM
- Speaker: Tracy Vandenbroek, Product Line Business Manager, ATCC Microbiology Systems

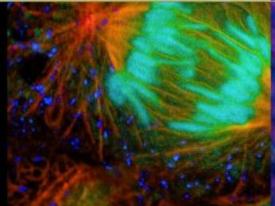
Real World Application of ATCC Quantitated Synthetic Nucleic Acid Standards

- Time: 2:45 PM 3:30 PM
- **Speaker:** Dr. Benjamin Pinsky, *Assistant Professor of Pathology and Medicine (Infectious Diseases)*, Standford University Medical Center

About ATCC

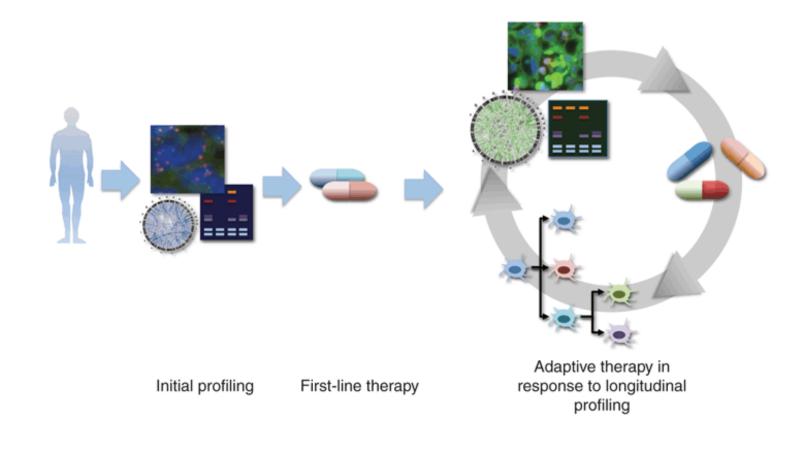
- Founded in 1925, ATCC is a non-profit organization with headquarters in Manassas, VA
- World's premiere biological materials resource and standards development organization
- ATCC collaborates with and supports the scientific community with industry-standard products and innovative solutions
- Broad range of biomaterials
 - Continuous cell lines, iPSCs, primary cells, and hTERT immortalized cells
 - Bacteria, fungi, yeasts, protists, and viruses
 - Microbial and tumor cell panels
 - Genomic and synthetic nucleic acids
 - Certified reference materials
 - Media, sera, and reagents

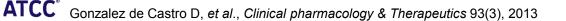




ATCC BIOLOGICAL CONTROLS FOR THE DETECTION AND ANALYSIS OF CANCER

Fang Tian, Ph.D. Lead Scientist, ATCC AMP November 12, 2014

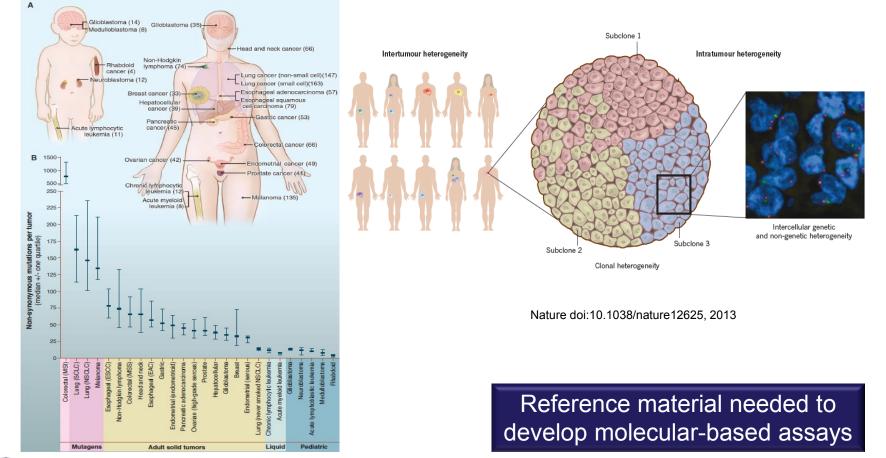




THE ESSENTIALS OF LIFE SCIENCE RESEARCH GLOBALLY DELIVERED*

The changing landscape of diagnostics

Molecular diagnostics and personalized precision medicine



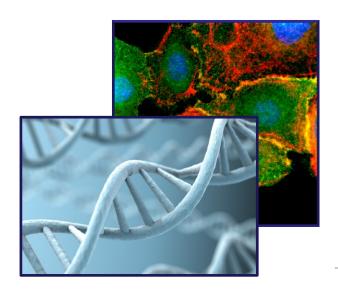
Somatic mutations and tumor heterogeneity

The prevalence of somatic mutations across pediatric and adult tumors

Intertumor heterogeneity and intratumor heterogeneity

Vogelstein B, et al. Science 339, 2013

6


Using reliable biomaterials as controls

Types of materials to choose:

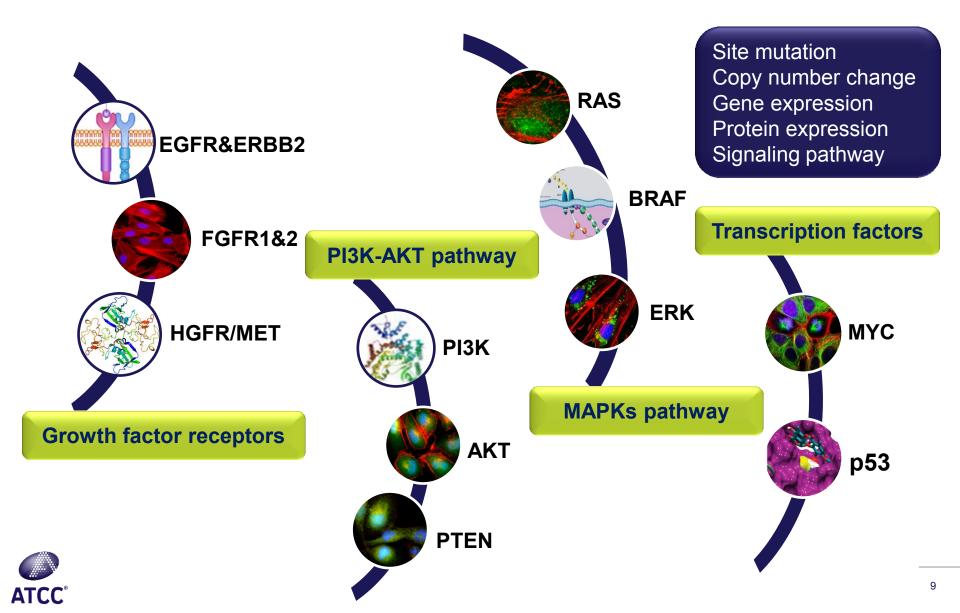
Reference Material	Benefit	Disadvantage
Synthetic oligonucleotides	Easy to design and synthesize	Do not resemble the complexity of the whole genome
Cell lines and cell line genomic DNA	Mimics the complexity of the whole genome	Rare mutations or biomarkers are difficult to obtain
Patient biopsy samples	Representative	Not a sustainable source

Other things to consider:

- Fully authenticated
- Avoid contamination or misidentification
- Characterized genetic alterations
- Stable molecular profiles
- Reproducible results

ATCC Certified Reference Material (CRM)

- Stable with respect to one or more specified property
- Possess a stated level of confidence for Traceability and Values of Uncertainty, where applicable


Example: KRAS mutation CRM cell lines and DNAs

ATCC [®] No.	Cell line name	Amino acid change	DNA change
CRM-TIB-161™	HuT 78	Wild Type	WT
CRM-CCL-119™	CCRF-CEM	p.G12D	c.35G>A
CRM-CCL-185™	A549	p.G12S	c.34G>A
CRM-CRL-1420 ™	MIA PaCa-2	p.G12C	c.34G>T
CRM-HTB-174™	NCI-H441	p.G12V	c.35G>A
CRM-CRL-3211™	PSN1	p.G12R	c.34G>C
CRM-CCL-155™	RPMI 8226	p.G12A	c.35G>C
CRM-HTB-26™	MDA-MB-231	p.G13D	c.38G>A

KRAS mutation analysis is currently used as a predictive marker of EGFR inhibitor therapeutic response

Molecular Signature Cell Panels

Point mutation validation

Example: RAS Genetic Alteration Panel (ATCC[®] TCP-1031[™])

ATCC [®] No.	Cell line name	Gene	AA Change	DNA Change	Zygosity	Coverage at Mutation Loci	% Zygosity
CRL-2177™	SW 1271	NRAS	p.Q61R	c.182A>G	Homozygous	26732	G = 99.8%
CRL-2273™	CHP-212	NRAS	p.Q61K	c.181C>A	Heterozygous	49859	C = 50.7, A = 49.1
CRL-7585™	Hs 852.T	NRAS	p.G12V	c.35G>T	Heterozygous	66411	G = 38.0, T = 61.8
CRL-9068™	NCI-H929	NRAS	p.G13D	c.38G>A	Heterozygous	21896	A = 53.9, G = 45.9
TIB-202™	THP-1	NRAS	p.G12D	c.35G>A	Heterozygous	60288	A = 70.1, G = 29.9
CRL-2547™	Panc 10.05	KRAS	p.G12D	c.35G>A	Heterozygous	42708	G = 52.7, A = 47.3
CRL-2549™	Panc 03.27	KRAS	p.G12V	c.35G>T	Heterozygous	58913	G = 47.0, T = 52.9
HTB-174™	NCI-H441	KRAS	p.G12V	c.35G>T	Heterozygous	87521	G = 52.8, T = 47.1
CL-187™	LS 180	KRAS	p.G12D	c.35G>A	Heterozygous	91234	G = 51.3, A = 48.6
CCL-225™	HCT-15	KRAS	p.G13D	c.38G>A	Heterozygous	49764	G = 52.1, A = 47.8

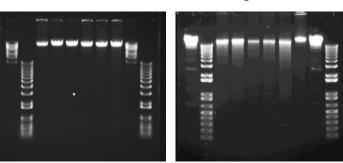
Gene copy number change validation

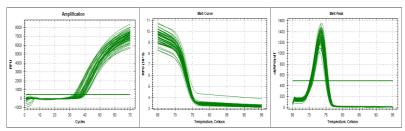
Example: EGFR Genetic Alteration Panel (ATCC[®] TCP-1027[™])

ATCC [®] No.	Cell line name	Gene	EGFR copy number variation	Measured CNV of EGFR	ERBB2 copy number variation	Measured CNV of ERBB2	Tumor source
CRL-2868™	HCC827	EGFR	Amplification	63.01	-	-	Lung
HTB-132™	MDA-MB-468	EGFR	Amplification	25.02	-	-	Breast
HTB-19™	BT-20	EGFR	Amplification	15.73	-	-	Breast
HTB-178™	NCI-H596	EGFR	Amplification	0.06	-	-	Lung
HTB-177™	NCI-H460	EGFR	-	-	-	-	Lung
CRL-5928™	NCI-H2170	ERBB2	-	-	Amplification	128.89	Lung
HTB-20™	BT-474	ERBB2	-	-	Amplification	29.70	Breast
HTB-27™	MDA-MB-361	ERBB2	-	-	Amplification	16.85	Breast

EGFR and HER2 are currently used as predictive markers of kinase inhibitor response in NSCLC and breast cancer therapy

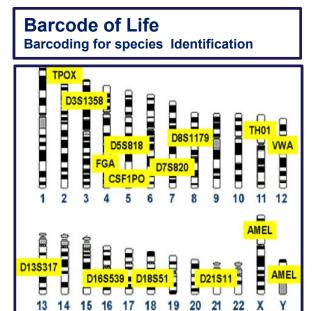
Do you have high quality DNA for your tests?

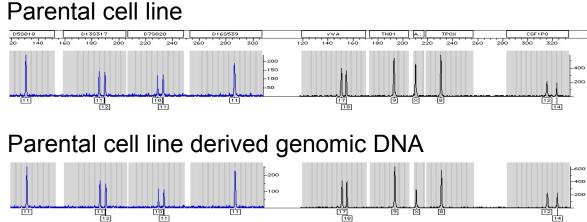

- Quantity
- Integrity
- Purity
- Identity
- Functionality


			A_{26}	₈₀ / ₂₈₀	
	2.40				
	2.30				
	2.20				
.0	2.10				
A260/A280 ratio	2.00				
/A28	1.90			and a second second	
V260	1.80			•	**
-	1.70 _				
	1.60				
	1.50				
	1.40				
	c)	20	40	60

Electrophoresis –uncut DNA

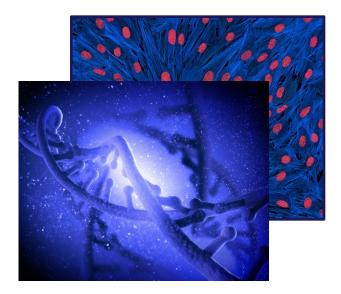
–DNA digestion


DNA tested in PCR-based assay



Ensure DNA identity & avoid contamination

- STR analysis (DNA profiling)
- Intraspecies identification and • authentication of human cell lines
- Target sequence consists of microsatellite DNĂ containing short tandem repeats
- STR test can determine:
 - DNA identity when compared to a reference
 - Cross-contamination



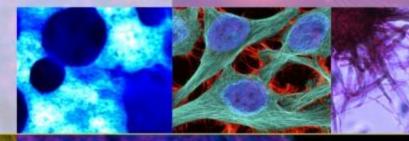
Tumor/normal cell line and DNA pair

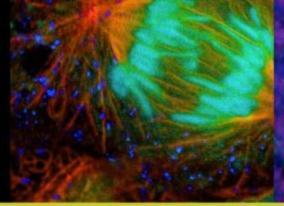
COLO829 (ATCC[®] CRL-1974[™])/COLO829BL (ATCC[®] CRL-1980[™])

- First comprehensive catalog of somatic mutations from an individual cancer
- Pleasance et al, Nature 2010, 463:191-196
- COLO829 Malignant melanoma
- COLO829BL Human lymphoblast
- SNVs, InDels, CNVs, SVs
 - Confirmed by PCR & sequencing
- HiSeq 90x WGS at Illumina & TGEN
- Complete Genomics WGS
- Multiple dilution series analyzed

Summary

- Next generation sequencing is revolutionizing medical research, and molecular diagnostics is facilitating the development of personalized medicine
- Challenges still remain, including the areas of technical, computational, data interpretation, standards, and Certified Reference Materials
- Authenticated cell lines and cell derivatives are useful tools in molecular-based assay development
- ATCC purified genomic DNA preparations are isolated from human cell lines and contain relevant oncological biomarkers


ATCC Poster Presentation


Cell Line Genomic DNAs for the Molecular Diagnosis of Cancer Poster #G55 Abstract #4502 November 15, 2014 from 9:45 AM – 10:45 AM

ATCC STANDARDS FOR INFECTIOUS DISEASE ASSAY DEVELOPMENT

Tracy Vandenbroek Business Manager – Microbiology, ATCC AMP November 12, 2014

THE ESSENTIALS OF LIFE SCIENCE RESEARCH GLOBALLY DELIVERED*

The microbial collection

ATCC® Genuine Cultures

- 18,000 bacteria
- 3,000 animal viruses
- 55,000 yeast and fungi
- 2,000 protozoa
- 1,000 plant viruses


ATCC Genuine Cultures[®] are authenticated using a polyphasic approach that includes genotypic, phenotypic, and functional analyses.

The nucleic acid collection

ATCC® Genuine Nucleics

- Nearly 1,000 genomic DNA & RNA preparations from the collection
- A growing list of synthetic nucleics
- A custom shop that will purify nucleic acids from most ATCC Genuine Cultures[®]

ATCC[®] Genuine Nucleics are authenticated and characterized to ensure integrity, purity, concentration, functional activity, and species identity.

Optimizing experimental conditions can be challenging during the design phase of assay development, including sourcing organisms or nucleic acids with known traits or relevant genes.

The ATCC portfolio includes:

- Cultures grouped by agent or source of isolation
- Cultures tested for clinically-relevant phenotypic characteristics
- Fully-sequenced strains
- Genomic nucleic acids from close to 1,000 infectious disease strains
- Synthetic nucleic acids containing clinically-relevant gene sequences

Establishing ideal inclusivity/exclusivity parameters is an essential part of assay validation, particularly for the development of diagnostic and epidemiological assays whose results can affect individual and public health.

ATCC collections are also grouped by:

- Serotype
- Toxin production
- Drug-resistance
- Clinical relevance

The performance of culture- and molecular-based assays is often evaluated through the examination of sensitivity, specificity, and limit of detection (LOD). Accurate determination of LOD relies on the use of authenticated microbial or molecular controls with known concentrations.

ATCC offers the following products and services:

- Quantified microorganisms
- Genomic nucleic acids with known concentration
- Synthetic nucleic acids with calculated genome copy number
- Extraction and quantification services

During assay development, or when using a pre-qualified assay or sequencing tool, it is important to select appropriate external controls to evaluate and verify the performance of each process. This testing is imperative in tracking drift and run-to-run variation within a procedure.

To aid in assay validation, ATCC offers an expansive array of authenticated cultures and nucleic acid preparations for use as external controls in:

- Nucleic acid extraction
- Process verification
- Amplification

ATCC

Proficiency testing

22

ISO certification & accreditation

- ISO 9001:2008 certification for quality management system
- ISO 13485:2003 certification for the design, development, production, testing, and distribution of medical devices
 - Applies to synthetic nucleics
- ISO Guide 34:2009 accreditation for production
 - Applies to Certified Reference Materials (CRMs)
- ISO/IEC 17025:2005 accreditation for testing
 - Applies to all ATCC cultures, derivatives, and bioproducts tested in our laboratories

ATCC is the first and only Biological Resource Center to hold all 4 accreditations/certifications

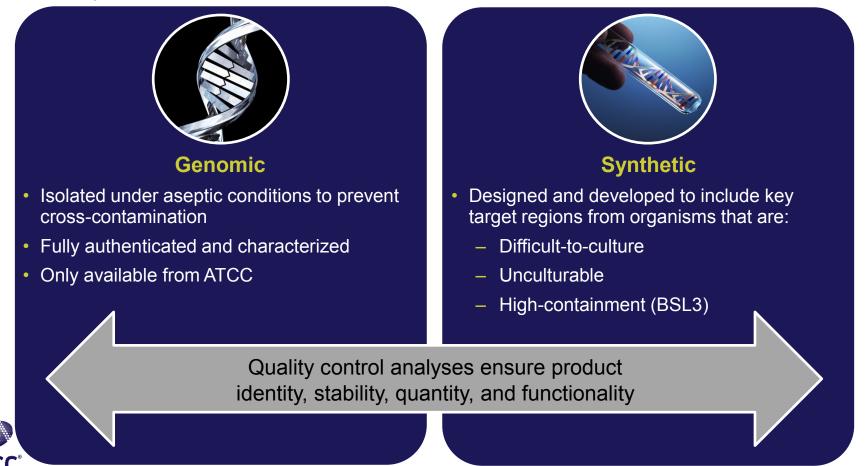
Certified Reference Material (CRM)

Applied in a variety of ways, including:

- Establishing sensitivity, linearity, and specificity during assay validation or implementation
- Challenging assay performance
- Validating or comparing test methods
- Testing and calibration in ISO 17025 labs that stipulate the use of reference materials
- Benchmarking critical assay performance for regulatory submissions and production lot release

Certified Reference Material (CRM)

Quantitative Mycoplasma DNA CRMs

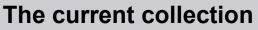

- Released early 2014
- Ten common Mycoplasma strains found in cell contamination
- Can be used to validate newer molecular-based Mycoplasma detection assays that claim to accurately detect lower concentrations of genomic material

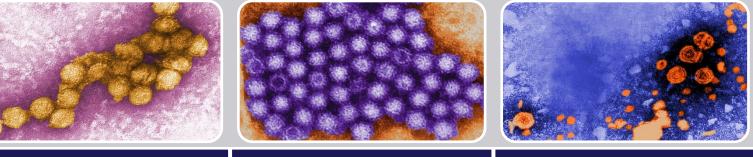
ATCC [®] No.	Species	Specification Range
qCRM-15531D	Mycoplasma pneumoniae	1x10 ⁶ – 1x10 ⁷ genome copies/µL
qCRM-17981D	Mycoplasma hyorhinis	1x10 ⁶ – 1x10 ⁷ genome copies/µL
qCRM-19610D	Mycoplasma gallisepticum	1x10 ⁶ – 1x10 ⁷ genome copies/µL
qCRM-19989D	Mycoplasma fermentans	1x10 ⁶ – 1x10 ⁷ genome copies/µL
qCRM-23064D	Mycoplasma salivarium	1x10 ⁶ – 1x10 ⁷ genome copies/µL
qCRM-23206D	Acholeplasma laidlawii	1x10 ⁶ – 1x10 ⁷ genome copies/µL
qCRM-23714D	Mycoplasma orale	1x10 ⁶ – 1x10 ⁷ genome copies/µL
qCRM-23838D	Mycoplasma arginini	1x10 ⁶ – 1x10 ⁷ genome copies/µL
qCRM-25204D	Mycoplasma synoviae	1x10 ⁶ – 1x10 ⁷ genome copies/µL
qCRM-27545D	Mycoplasma hominis	1x10 ⁶ – 1x10 ⁷ genome copies/µL

ATCC[®] Genuine Nucleics

The largest and most diverse array of genomic and synthetic materials for use in molecular-based assays, quality control, and assay development

Quantitative genomic DNA


- Gene copies are quantitated by Droplet Digital[™] PCR (Bio-Rad[®])
- Allows for the easy generation of a standard curve for qPCR



27

Synthetic molecular standards

- Designed to target regions encompassing common primer sequences
- Stabilized with RNAstable[®] (Biomātrica[®])
- Quantified by Droplet Digital[™] PCR (Bio-Rad[®])

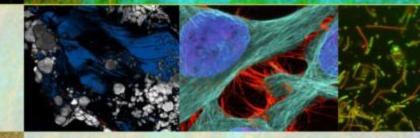
Vector-borne Disease Research

- West Nile virus
- Dengue virus serotypes 1-4

Gastroenteritis Research

Norovirus GI & GII

Sexually Transmitted Infection Research


- Mycoplasma genitalium
- Treponema pallidum
- Hepatitis B
- Hepatitis C

THANK YOU

THE ESSENTIALS OF LIFE SCIENCE RESEARCH GLOBALLY DELIVERED "

ATCC'

